Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: CD=AB(1)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(CD^2=BH\cdot BC\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=25^2-15^2=400\)
=>AC=20(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot25=15\cdot20=300\)
=>AH=12(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{15^2}{25}=9\left(cm\right)\\CH=\dfrac{20^2}{25}=16\left(cm\right)\end{matrix}\right.\)
b: I là trung điểm của AH
=>IA=IH=12/2=6cm
Xét ΔCBK có HI//BK
nên \(\dfrac{HI}{BK}=\dfrac{CH}{CB}\)
=>\(\dfrac{6}{BK}=\dfrac{16}{25}\)
=>\(BK=6\cdot\dfrac{25}{16}=9,375\left(cm\right)\)
a: Xét tứ giác BPQC có
\(\widehat{BPC}=\widehat{BQC}=90^0\)
Do đó: BPQC là tứ giác nội tiếp