Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a: Xét ΔAMB và ΔEMC co
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
nên ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔAMD có
MH vừa là đường cao, vừa là trung tuyến
nên ΔAMD cân tại M
a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:
^AHB = ^DHB ( 1v )
HA = HD ( giả thiết )
MH chung
=> \(\Delta\)AHB = \(\Delta\)DHB ( c.g.c)
b) Từ (a) => ^ABH = ^DHB => BH là phân giác ^ABD
Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC
=> BC là phân giác ^ABD
c) NF vuông BC
AH vuông BC
=> NF // AH
=> ^NFM = ^HAM ( So le trong )
Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )
=> \(\Delta\)NFM = \(\Delta\)HAM ( g.c.g)
=> NF = AH ( 2)
Từ ( a) => AH = HD ( 3)
Từ (2) ; (3) => NF = HD
\(\text{#TNam}\)
`a,` Xét Tam giác `AMB` và Tam giác `EMC` có:
`MA=ME (g``t)`
\(\widehat{AMB}=\widehat{CME} (\text {2 góc đối đỉnh})\)
`MB=MC (\text {M là trung điểm của BC})`
`=> \text {Tam giác AMB = Tam giác EMC (c-g-c)}`
`b,` Vì Tam giác `AMB =` Tam giác `EMC (a)`
`-> AB = CE (\text {2 cạnh tương ứng}) (1)`
Xét Tam giác `ABH` và Tam giác `DBH` có:
`HA = HD (g``t)`
\(\widehat{AHB}=\widehat{DHB}=90^0\)
`\text {BH chung}`
`=> \text {Tam giác ABH = Tam giác DBH (c-g-c)}`
`-> AB = BD (\text {2 cạnh tương ứng}) (2)`
Từ `(1)` và `(2) -> CE = BD.`
`c,` Xét Tam giác `AMH` và Tam giác `DMH` có:
`\text {MH chung}`
\(\widehat{AHM}=\widehat{DHM}=90^0\)
`HA = HD (g``t)`
`=> \text {Tam giác AMH = Tam giác DMH (c-g-c)}`
`-> MA = MD (\text {2 cạnh tương ứng})`
Xét Tam giác `AMD: MA = MD`
`-> \text {Tam giác AMD cân tại M}`
*Hoặc nếu như bạn có học rồi, thì mình có thể dùng cái này cũng được nè cậu:>.
Vì `MH` vừa là đường cao (hạ từ đỉnh `->` cạnh đối diện), vừa là đường trung tuyến.
Theo tính chất của tam giác cân `-> \text {Tam giác AMD là tam giác cân} (đpcm).`
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xét ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xét ΔMAD có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMAD cân tại M
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a) Xét \(\Delta AHB\)và \(\Delta DHB\)có:
\(AH=DH\left(gt\right)\)
BH là cạnh chung
\(\widehat{AHB}=\widehat{DHB}\left(=90^0\right)\)
\(\Rightarrow\Delta ABH=\Delta DBH\left(c.g.c\right)\)
b) Vì \(\Delta ABH=\Delta DBH\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )
=> BC là tia phân giác \(\widehat{ABD}\)( đpcm )
A)Xét t/giác AHB và t/giác DHB có
AH=AD(gt)
Góc AHB=góc DHB=900
BH là cạnh chung
Suy ra t/giác AHB=t/giác DHB(c-g-c)
B)Ta có Góc ABH=góc DBH( t/giác ABH=t/giác DBH)
Suy ra :BC là tia phân giác của góc ABD
C)Xét t/giác AHM vuông tại H và t/giác FNM vuông tại N
AM=FM(gt)
Góc AHM= góc FMN(2 góc đối đỉnh)
Suy ra t/giác AHM =t/giác FNM( cạnh huyền -góc nhọn)
Suy ra AH=NF (2 cạnh tương ứng)
Mà AH=HD (gt)
Suy ra NF=HD
Chúc bn hc tốt
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
mong mn giúp