K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

a) Tự cm

b) Vì AB//DM mà ABvuoong góc với AC nên DM vuông góc với AC

Vì AH vuông góc với BC mà M thuộc BC nên CH vuông góc với AD

Xét tam giác ADC có:

DM vuông góc với AC

CM vuông góc với AD

mà DM cắt CM tại M

=> M là trực tâm của tam giác ADC

=> AM vuông góc với CD

=> đpcm

28 tháng 12 2016

c) Xét tam giác NCm có 

I là trung điểm của CM

=> IM=IN=IC

Xét tam giác IN< có

IM=IN

=> IMN cân tại I

=> IMN=INM góc

mà IMN=DMH

=> INM=DMH(3)

Xét tam giác AND có

H là trung điểm của AD

=> NH=HD=HA

tương tự tam giác NHD cân tại H

=>D=N( góc)(2)

mà HDN+DMH=90 độ(1)

Từ 1.2.3=> INM+MNH=90 độ

hay IN vuông góc với NH

đpcm

12 tháng 12 2018

a,ta có:

DM // AB=>ABDM  là hình thang

AH=DH => ABDM là hbh mà AD vuông góc với BC 

=> ABDM là hình thoi

13 tháng 12 2018

còn câu b,c thì sao bạn

17 tháng 12 2018

a) Ta có : AB//DM (gt)   (1)

Xét tam giác ABH và tam giácDMH có 

 BHA^=DHA^(đối đỉnh)

AH=HD(A đx D qua H)

BAH^=HDM^(so le trong)

=> tam giác ABH=tam giácDMH (g-c-g)

=>AB=DM ( 2 cạnh tương ứng) (2)

Tử (1)(2) => ABDM là hbh

Vì M thuộc BC 

mà AH vuông BC => AH vuông BM

Xét hbh ABDM có

AH vuông BM

=> hbh ABDM là hình thoi

17 tháng 12 2018

B A C D H M N I

ĐỀ CHƯA RÕ TỪ SẼ CHO BÀI TỐT HƠN

=> A1ˆ=D1ˆA1^=D1^(so le trong )

* Xét △AHB và △DHM có

H1ˆ=H2ˆ(=900)H1^=H2^(=900)

AH =HD (D đối xứng với A qua H )

A1ˆ=D1ˆ(cmt)A1^=D1^(cmt)

=> △AHB = △DHM (g.c.g)

=> BH = MH (2 cạnh t/ứng )

* xét tứ giác ABDM có

AH=HD (d đối xứng với A qua H)

BH=MH (cmt)

=> ABDH là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)

mà AD ⊥BM

=> ABDM là hình thoi (hbh có 2 đường chéo vuông góc với nhau )(đpcm)

b) vì

+DN//AB (gt)

+AB ⊥AC (△ABC vuông tại A)

=> AC ⊥DN (qh từ vuông góc đến song song )

=> DN là đường cao △ ADC(1)

mà AD ⊥CH ( AH ⊥AC)

=> CH là đường cao của △ADC

từ (1) và (2) => M là trực tâm của △ADC

=> AM là đường cao

=> AM ⊥DC (đpcm)