Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) IN là đường trung bình tam giác AHC => IN//AC. Mà AC vuông góc AB
=> IN vuông góc AB (Quan hệ //, vuông góc)
Xét tam giác ABI:
AH vuông góc BI, IN vuông góc AB (N thuộc AH)
=> N là trực tâm tam giác ABI (đpcm)
b) Ta có: BK vuông góc AB, IN vuông góc AB (cmt) => BK//IN (1)
IK vuông góc AI, BN vuông góc AI (N là trực tâm tam giác ABI)
=> IK//BN (2)
Từ (1) và (2) => BNIK là hình bình hành (đpcm)
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
1: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của đường chéo BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét tứ giác BHCD có
CH//BD
BH//CD
Do đó: BHCD là hình bình hành
2: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HD
hay H và D đối xứng nhau qua M
1: Xét ΔABC có BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
2: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>M là trung điểm của HD
Xét ΔDAH có
M,O lần lượt là trung điểm của DH,DA
nên MO là đường trung bình
=>AH=2MO
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành