K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC có BE,CF là các đường cao

BE cắt CF tại H

=>H là trực tâm

=>AH vuông góc BC

Xét tứ giác BHCD có

BH//CD

BD//CH

=>BHCD là hình bình hành

2: BHCD là hình bình hành

=>BC cắt HD tại trung điểm của mỗi đường

=>M là trung điểm của HD

Xét ΔDAH có

M,O lần lượt là trung điểm của DH,DA

nên MO là đường trung bình

=>AH=2MO

29 tháng 1 2023

Came ơn b nha :))

 

22 tháng 12 2016

trực tâm ở cạnh nào hay góc nào bạn?

có trực tâm chính xác sẽ làm dễ hơn

22 tháng 12 2016

trực tâm là giao 3 đường cao trong tâm giác mà bạn

 

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

20 tháng 12 2020

undefined

9 tháng 1 2021

sai rồi

a: Xét tứ giác BHCD có 

BH//CD

BD//CH

Do đó: BHCD là hình bình hành

b: Ta có: BHCD là hình bình hành

nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường

mà I là trung điểm của BC

nên I là trung điểm của HD