K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

cái này k là toán thì là j

1 tháng 5 2020

100-79=

18 tháng 6 2016

Trong tam giác ABH : 

góc IAH = góc IHB (cùng phụ góc AHI)

Trong tam giác ACH :

góc CAH = góc CHK (cùng phụ góc AHK)

cộng vế với vế :

IAH +CAH = IHB +CHK

90             = IHB + CHK

Suy ra 180 - IHB - CHK = IHK

           180-90             = IHK

               90 = HIK

HI _l_ HK

Tứ giác AIHK có 4 góc vuôn nên AIHK là Hình chữ nhật 

=> IA = HK và IK =AH 

a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: EF=AH

b: Ta có: AEHF là hình chữ nhật

nên Hai đườg chéo AH và FE cắt nhau tại trung điểm của mỗi đường

hay OA=OH;OE=OF

a) Ta xét ▵AHB và▵AHC, ta có

AH là cạnh chung

AC=AB ( vì tam giác cân tại A)

góc AHC = góc AHB là góc vuông (90 độ)

-> ▵AHB =▵AHC (cạnh huyền- cạnh góc vuông)

b) Ta có ▵AHB =▵AHC (cmt)

->HB=HC ( 2 cạnh tương ứng)

c) Ta xét ▵AKH và ▵AIH. Ta có: 

AH là cạnh chung 

góc AKH = góc AIK = 90 độ 

-> ▵AKH =▵AIH (cạnh huyền - cạnh góc vuông)

-> AK = AI (2 cạnh tương ứng) nên ▵AIK là tam giác cân và cân tại A

d) Ta áp dụng tính chất: Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

Ta có AH là cạnh chung cùng vuông góc với IK và BC

-> IK // BC

e) Ta cho giao điểm của AH và IK là O 

Ta xét ▵AKO và ▵AIO

Ta có AK=AI (cmt)

Góc AOK = góc AOI = 90 độ

-> ▵AKO = ▵AIO

-> KO = IO ( 2 cạnh tương ứng) -> AH là đường trung trực của đoạn thẳng IK

21 tháng 4 2020

A B C K M O E H P

21 tháng 4 2020

a ) a.Vì P∈Trung trực của BC

\(\Rightarrow PB=PC\)

Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)

Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)

\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)

\(\Rightarrow BH=CK\)

b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)

\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A 

Mà AP là phân giác ^A 

\(\Rightarrow AP\perp HK\)

Qua B kẻ BE // AK , \(E\in HK\)

\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)

Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)

\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)

Mà \(BH=CK\Rightarrow BE=CK\)

Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)

Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BME}=\widehat{KMC}\)

\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)

\(\Rightarrow E,M,K\) thẳng hàng 

\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng 

c ) Do \(PA\perp HK\) ( câu a ) 

\(\Rightarrow AP\perp HK=O\)

Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK

\(\Rightarrow OH=OK\)

\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)

                                                                 \(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)

                                                                    \(=AH^2+PH^2\)

                                                                    \(=AP^2,\left(PH\perp AB\right)\)