Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C
Xét tam giác ABH và tam giác ACH
Có: AB=AC (Vì tam giác ABC cân tại A)
AH chung
HB=HB (GT)
suy ra tam giác ABH = tam giác ACH (c.c.c) (1)
b) Vì HB=HC=BC/2=6/2=3 (cm)
Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)
mà góc AHB=góc AHC=180 độ
suy ra góc AHB=góc AHC=90 độ
Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)
suy ra 5^2=AH^2+3^2
25=AH^2+9
suy ra AH^2=16 suy ra AH=4(cm) vì AH >0
c) Xét tam giác vuông AHE và tam giác vuông AHF
có AH chung
góc HAE=góc HAF ( theo câu a)
suy ra tam giác AHE =tam giác AHF (cạnh huyền-góc nhọn)
suy ra AE=AF suy ra A thuộc đường TT của EF (3)
HE=HF suy ra H thuộc đường TT của EF (4)
từ (3) và (4) suy ra AH là đường TT của EF
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG)
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)
a: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: EF=AH
b: Ta có: AEHF là hình chữ nhật
nên Hai đườg chéo AH và FE cắt nhau tại trung điểm của mỗi đường
hay OA=OH;OE=OF