Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có
BM chung
góc ABM=góc NBM
=>ΔBAM=ΔBNM
=>BA=BN; MA=MN
=>BM là trung trực của AN
=>BM vuông góc AN
b: Xét ΔMBC có
MN vừa là đường cao, vừa là trung tuyến
nên ΔMBC cân tại M
=>góc ACB=góc MBC=1/2gócABC
=>góc ABC=60 độ; góc ACB=30 độ
*bạn tự vẽ hình nhé
a) Xét Δ AMB và Δ DMC có :
BM = CM (gt)
AM = DM (gt)
góc M1 = M2 ( 2 góc đối đỉnh )
=> ΔAMB = ΔDMC (c-g-c)
=> góc MBA = góc MCD ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB//CD
A) Xét tam giác ABH và tam giác ADH có :
HB=HD ( giả thiết)
HA ( cạnh chung)
góc DHA=góc BHA=90độ
suy ra tam giác ABH=tam giác ADH ( C-G-C)
B)Xét tam giác EHD và tam giác BHAcó:
HE=HA( GT)
góc AHB=góc DHE(hai góc đối đỉnh )
HD=HB( GT)
vậy suy ra : tam giácBHA= tam giác EHD( C-G-C)
vậy BA=ED( hai cạnh tương ứng)
C)ta gọi giao điểm của ED và AC là I
ta có góc IEA = góc EAB( hai góc tương ứng)
mà hai góc này lại ở
vị trí sole trong ở hai đoạn thẳng BA và EI
suy ra : BAsong song với EI
mà ta lại có góc BAI = 90 độ mà lại bù nhau với góc EIA vậy góc EIA =180 độ - 90 độ =90 độ
vậy EI vuong góc với AC
jfccfffcfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
4)
theo câu 2,ta có:\(\Delta ABM=\Delta CDM\left(g.cg\right)\)
\(\Rightarrow AB=CD\Rightarrow\frac{1}{2}AB=\frac{1}{2}CD=IB=BA=CK=KD\)
xét \(\Delta\) AIM và \(\Delta\)CKM có:
AI=CK(cmt)
AM=MC(gt)
góc IAM=góc MCK=\(90^o\)
=>\(\Delta AIM=\Delta CKM\left(c.g.c\right)\)
\(\Rightarrow\widehat{IMA}=\widehat{CMK}\) => M là giao điểm của IK và AC
=> I,M,K thẳng hàng