Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:
\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)
Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$
$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.
Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)
Vậy ta có đpcm.
b)
Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$
$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$
Mặt khác:
$FN\parallel AC\Rightarrow FN\parallel AE(2)$
$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$
Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$
Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)
c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:
$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$
$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$
Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm.
bài 2 bạn tự vẽ hình nha
xét tam giác vuông ABC và tam giác vuông DBA co chung goc BAC
==> tam giác ABC đồng dạng với tam giác DBA
==> AB/BC=BD/AB (1)
xét tam giác DBA có BF là phân giác ==> BD/AB=DF/AF(2)
xét tam giác vuông BAC có BE là phân giác ==> AB/BC=AE/EC (3)
từ (1) (2) (3) ta có DF/FA =AE/EC (vì cùng bằng AB/BC )
không vip gửi câu hỏi được ko vậy