K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi G là trọng tâm, M là trung điểm của BC

=>AG=2/3AM

BM+BE=EM

CM+CF=MF

mà BM=CM; BE=CF

nên EM=MF

=>M là trung điểm củaEF

Xet ΔAEF có

AM là trung tuyến

AG=2/3AM

=>G là trọng tâm của ΔAEF

b: G là trọng tâm cùa ΔAEF

=>N là trung điểm của AF

Xét ΔAEF có FM/FE=FN/FA

nên MN//AE và MN=1/2AE

Xét ΔGAE có GH/GA=GI/GE

nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI

Kẻ trung tuyến AM của \(\Delta ABC\) và trên AM đặt \(AG=\frac{2}{3}AM\)

Xét \(\Delta GHI\)\(\Delta GMN\) có : HG = \(\frac{1}{2}AG\)\(AG=\frac{2}{3}AM\)

nên \(HG=\frac{1}{2}.\frac{2}{3}AM=\frac{1}{3}AM;GM=\frac{1}{3}AM\)

Vậy HG = GM

tương tự ta có \(GI=CN=\frac{1}{3}EN;\widehat{HGE}=\widehat{NGM}\) (đối đỉnh)

\(\Rightarrow\Delta GHI=\Delta GMN\)

=> HI = MN ; \(\widehat{IHG}=\widehat{NMG}\) mà 2 góc này nằm ở vị trí so le trong => HI // MN

21 tháng 5 2019

Thanks

12 tháng 3 2019

19 tháng 3 2021

undefinedundefined

a: BM+BE=ME

MC+CF=MF

mà BM=MC và BE=CF

nên ME=MF

Xét ΔAEF có

AM là trung tuyến

AG=2/3AM

=>G là trọng tâm

b: Xét ΔAEF có

EN là trung tuyến

G là trọng tâm

=>E,G,N thẳng hàng

c: Xét ΔGAE có GH/GA=GI/GE

nên IH//AE và IH=1/2AE
=>IH//MN và IH=MN

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN

21 tháng 12 2023

a:

Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABE}=\widehat{ACF}\)

Xét ΔABE và ΔACF có

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)(cmt)

BE=CF

Do đó: ΔABE=ΔACF

=>AE=AF

=>ΔAEF cân tại A

b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có

BE=CF

\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)

Do đó: ΔBHE=ΔCKF

c: Ta có: ΔBHE=ΔCKF

=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF

Ta có: AH+HE=AE

AK+KF=AF

mà HE=KF và AE=AF

nên AH=AK

Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

AH=AK

Do đó: ΔAHI=ΔAKI

=>IH=IK

=>ΔIHK cân tại I

 

a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

Ta có: ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

b: Xét ΔAEB và ΔAFC có 

EB=FC

\(\widehat{ABE}=\widehat{ACF}\)

AB=AC

Do đó: ΔAEB=ΔAFC

Suy ra: AE=AF

18 tháng 1 2022

cảm ơn