Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link bài làm tương tự nhé!
A B C F E M D
a)Xét ΔAME và ΔDMB có:
AM=DM(gt)
\(\widehat{AME}=\widehat{DMB}\left(đđ\right)\)
ME=MB(gt)
=> ΔAME=ΔDMB(c.g.c)
=> \(\widehat{AEM}=\widehat{DBM}\). Mà hai góc này ở vị trí sole trong
=> AE//BC
b)Xét ΔAMF và ΔDMC có:
AM=DM(gt)
\(\widehat{AMF}=\widehat{DMC}\left(đđ\right)\)
MF=MC(gt)
=> ΔAMF=ΔDMC(c.g.c)
=> \(\widehat{AFM}=\widehat{DCM}\). Mà hai góc này ở vị trí sole trong
=> AF//DC
Vì: AE//BC(cmt) ; AF//BC(cmt)
=> Ba điểm E,A ,F thẳng hàng
c) Xét ΔMBF và ΔMEC có:
MB=ME(gt)
\(\widehat{BMF}=\widehat{EMC}\left(đđ\right)\)
MF=MC(gt)
=>ΔMBF=ΔMEC(c.g.c)
=>\(\widehat{MFB}=\widehat{MCE}\). Mà hai góc này ở vị trí sole trong
=>BF//CE
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AF
b) AD < BC
c) Ba điểm E, D, F thẳng hàng
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
Moọe,làm xong tự nhiên olm tải lại tap.
Vẽ giùm cái hình (hồi nãy vẽ hình đẹp lắm mà giờ bị mất->lười vẽ)
a)Xét tam giác DMB và AME có:
\(\hept{\begin{cases}MA=MD\left(gt\right)\\\widehat{AME}=\widehat{DMB}\left(đđ\right)\\BM=EM\left(gt\right)\end{cases}}\Rightarrow\Delta DMB=\Delta AME\Rightarrow AE=BD\)
b)Từ \(\Delta DMB=\Delta AME\Rightarrow\widehat{MDB}=\widehat{MAE}=90^o\Rightarrow AE//BD\) (so le trong) (1)
Đến đây chứng minh FA // DC bằng cách chứng minh tam giác AMF = tam giác DMC để suy ra góc CMD = góc AMF = 90o (so le trong)
Từ đó suy ra E;A;F thẳng hàng.