K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Đáp án B

Áp dụng định lý hàm số sin, ta có  B C sin B A C ^ = A C sin A B C ^ = A B sin A C B ^ = 2 R

  ⇔ B C sin 75 0 = A C sin 45 0 = A B sin 60 0 = 2 R ⇔ A B = 2 R . sin 60 0 = R 3 B C = 2 R . sin 75 0 = 6 + 2 2 R A C = 2 R . sin 45 0 = R 2

Lại có

S Δ A B C = 1 2 A B . A C . s i n B A C ^ = 1 2 B H . A C ⇔ B H = A B . s i n B A C ^ = R 3 . sin 75 0

  ⇔ B H = 3 6 + 2 4 R .

Khi quay Δ A B C  quanh AC thì Δ B H C  tạo thành hình nón tròn xoay (N) có đường sinh l = B C = 6 + 2 2 R , bán kính đáy r = B H = 3 6 + 2 4 R .

Diện tích xung quanh hình nón  (N) là

S x q = π r l = π 3 6 + 2 4 R . 6 + 2 4 R = 3 + 2 3 2 π R 2

 (đvdt).

 

28 tháng 3 2019

Đáp án A.

Áp dụng định lý Sin, ta có 2 R = A B sin A C B ^ ⇒ A B = 2 R . sin 60 ° = R 3 .  

Và 2 R = B C sin B A C ^ ⇒ B C = 2 3 + 1 2 .  Xét  ∆ B H C  vuông tại H, ta có

sin A C B ^ = B H B C ⇒ B H = sin 60 ° . B C = 6 + 3 2 4 R .  

cos A C B ^ = C H B C ⇒ C H = cos 60 ° . B C = 6 + 2 4 R .  

Khi quay  ∆ B H C  quanh trục AC ta được hình nón tròn xoay có bán kính đường tròn đáy r = BH và chiều cao h = C H = 6 + 2 4 R .  Vậy  S x q = πrl = 3 + 2 3 2 πR 2

4 tháng 2 2018

∆ A B C : B C = 2 R sin 75 o = R 2 6 + 2 ∆ B H C : B H = B C sin 60 o = R 6 4 3 + 1 S x q = π . BH . BC = πR 2 3 4 3 + 1 2

Đáp án D

1 tháng 4 2016

a) Đường sinh l của hình nón là:

l =  =  = 5√41 (cm).

Diện tích xung quanh của hình nón là:

Sxq = πrl = 125π√41 (cm2)

b) Vnón = = (625.20π)/3 = (12500π)/3 (cm3)

c) Giả sử thiết diện cắt hình tròn đáy theo đoạn thẳng AB.

GỌi I là trung điểm AB, O là đỉnh của nón thì thiết diện là tam giác cân OAB.

Hạ HK vuông góc AI, H là tâm của đáy, thì HK vuông góc ( OAB) và theo giả thiết HK = 12 (cm)


 

22 tháng 4 2017

Chọn C.

Ta có S xq = πrl = πr h 2 + r 2 = 15 π .

30 tháng 4 2019

 

Đáp án A

Khi quay hình tròn C quay trục OA ta được khối cầu có thể tích  V = 4 3 π R 3 = 36 π

Khối tròn xoay  H 1  chưa điểm A chính là chỏm cầu có chiều cao  x 2 + 4

Suy ra thể tích khối H 1 là  V 1 = π h 2 R − h 3 = π . A H 2 . 3 − A H 3

Mà V = V 1 + V 2  và 

V 2 = 2 V 1 ⇒ V 1 V = 1 3 = A H 2 . 3 − A H 3 36 = 1 3 ⇔ A H 3 − 9 A H 2 + 36 = 0      *

Vì 0 < A H < O A = 3  nên giải  * → c a s i o A H ≈ 2 , 32

 

24 tháng 9 2019

11 tháng 5 2019

21 tháng 5 2019

Hình nón được tạo thành có độ dài đường sinh là l = OA = 2, chu vi đường tròn đáy bằng độ dài cung AB và bằng