Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC có : ABC + ACB + BAC = 180 => ABC + ACB = 120
mà BD , CE lần lượt là phân giác của ABC , ACB => 2IBC + 2ICB = 120 <=> IBC + ICB = 60
Có : DIE+DIC = 180 ( kề bù ) mà DIC = IBC + ICB = 60 ( góc ngoài của tam giác IBC )
=> DIE = 120 và DIE + BAC = 180 => AEID nội tiếp
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2\)=\(AB^2+AC^2\)
⇔\(BC^2\)= 52 + 122 =169
hay BC = 13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay R = \(\dfrac{BC}{2}\)= \(\dfrac{13}{2}\) =6.5(cm)
2:
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
góc OKM=góc OAM=góc OBM=90 độ
=>O,P,A,M,B cùng nằm trên đường tròn đường kính OM
góc AKM=góc AOM
góc BKM=góc BOM
mà góc AOM=góc BOM
nên góc AKM=góc BKM
=>KM là phân giác của góc AKB
a) tg AEHF co E=F=90( o vi tri goc doi)
nen AEHF la tg noi tiep
b) tớ chua ve hinh nên bạn tu lam neu k dc
tớ lam tiep
Góc ở tâm có số đo bằng hai lần số đo cung bị chắn nên góc AOB sẽ có số đo là 120 độ. ( Gấp hai lần góc C á)