Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Ta có BG vuông góc AB; CH vuông góc AB => BG//CH
Ta có BH vuông góc AC; CG vuông góc AC => BH//CG
=> BHCG là hình bình hành (Tứ giác có các cặp cạnh dối // với nhau từng đôi một)
M là giao 2 đường chéo của hình bình hành BHCG => M là trung điểm của BC (trong hình bình hành hai đường chéo cắt nhau tại trung điểm mỗi đường)
b/ Ta có H trực tâm của tg ABC => AH vuông góc BC; AB vuông góc CE => ^PAH = ^HCM (góc có cạnh tương ứng vuông góc) (1)
Ta có PQ vuông góc HG (đề bài) và AB vuông góc CE (đề bài) => ^APH = ^CHM (góc có cạnh tương ứng vuông góc) (2)
Từ (1) và (2) => tg CMH đồng dạng với tg AHP
c/
a: Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>H,M,K thẳng hàng
b: BHCK là hình thoi khi BH=HC
=>AB=AC
Sửa đề: Từ C,B kẻ các đường thẳng vuông góc với AC,AB cắt nhau tại K
a: CK vuông góc AC
BH vuông góc AC
Do đó: CK//BH
BK vuông góc AB
CH vuông góc AB
Do đó: BK//CH
Xét tứ giác BHCK có
BH//CK
BK//CH
Do đó: BHCK là hình bình hành
b: BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
=>H,M,K thẳng hàng
c) Ta có AB vuông góc BK; AB vuông góc CH => BK//CH
tương tự BH//CK => tứ giác BHCK là hình bình hành mà M là trung điểm BC => M là trugn điểm HK => H,M,K thẳng hàng