K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DD
Đoàn Đức Hà
Giáo viên
13 tháng 7 2021
Xét tứ giác \(AIDK\):
\(AI//DK,AK//DI\)
Suy ra \(AIDK\)là hình bình hành.
mà \(AD\)là phân giác trong của góc \(\widehat{IAK}\)nên \(AIDK\)là hình thoi .
Suy ra \(DK=DI\)
do đó tam giác \(IDK\)là tam giác cân.
9 tháng 1 2023
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
Xét tứ giác \(HECD\) có :
∠\(HEC=90^0\) ( Vì \(BE\)⊥\(AC\) )
∠\(HDC=90^0\) ( Vì \(AD\)⊥\(BC\) )
Mà 2 góc này đối nhau do đó :
Tứ giác \(HECD\) nội tiếp đường tròn => ∠\(HDE\)\(=\)∠\(HCE\) ( Cùng chắn cung \(HE\) )\(\left(1\right)\)
Tương tự :
Tứ giác \(HFBD\) cũng nội tiếp đường tròn ( Vì ∠\(HBF\)\(=90^0\) và ∠\(HDB=90^0\))
=> ∠\(HDF=\) ∠\(FBH\) ( Cùng chắn cung \(HF\) )\(\left(2\right)\)
Ta lại có :
∠\(CFB=\) ∠\(BEC\) \(=90^0\)
Mà 2 góc này cùng nhìn cạnh \(BC\) do đó :
Tứ giác \(EFBC\:\) nội tiếp đường tròn => ∠\(EBF\)\(=\) ∠\(ECF\) ( Cùng chắn cung \(EF\) )\(\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) suy ra ∠\(IDH=\) ∠\(KDH\) hay \(DH\) là tia phân giác của △\(DIK\)\(\left(4\right)\)
Mặc khác : Đường thẳng qua \(H\)//BC => Đường thẳng đó ⊥ \(AD\) tại \(H\) hay \(DH\) là đường cao của △\(DIK\)\(\left(5\right)\)
Từ \(\left(4\right)\) và \(\left(5\right)\) suy ra △\(DIK\) cân =>\(đpcm\)
dùng kiến thức lớp 7 được ko anh