Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AH: 2x+5y+3=0
=>BC: 5x-2y+c=0
Thay x=3 và y=5 vào BC, ta được:
c+15-10=0
=>c=-5
=>5x-2y-5=0
Tọa độ C là:
5x-2y-5=0 và x+y-5=0
=>5x-2y=5 và x+y=5
=>x=15/7 và y=20/7
=>C(15/7;20/7)
AH: 2x+5y+3=0
=>A(x;-2/5x-3/5)
CM: x+y-5=0
=>M(-y+5;y)
Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y
=>x+3+2y=10 và -2/5x+17/5-2y=0
=>x+2y=7 và -2/5x-2y=-17/5
=>x=6 và y=1/2
=>A(6;-3); B(3;5); C(15/7;20/7)
vecto AB=(-3;8)
=>VTPT là (8;3)
=>Phương trình AB là:
8(x-3)+3(y-5)=0
=>8x-24+3y-15=0
=>8x+3y-39=0
A(6;-3); C(15/7;20/7)
vecto AC=(-20/7;41/7)
=>VTPT là (41/7;20/7)
Phương trình AC là:
41/7(x-6)+20/7(y+3)=0
=>41(x-6)+20(y+3)=0
=>41x-246+20y+60=0
=>41x+20y-186=0
Đường thẳng BC đi qua C và vuông góc AH nên nhận (2;-1) là 1 vtpt
Phương trình BC:
\(2\left(x-0\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}2x-y-2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow B\left(2;2\right)\)
Phương trình đường thẳng d qua C và vuông góc BN có dạng:
\(1\left(x-0\right)+1\left(y+2\right)=0\Leftrightarrow x+y+2=0\)
Gọi D là giao điểm d và BN \(\Rightarrow\left\{{}\begin{matrix}x+y+2=0\\-x+y=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;-1\right)\)
Gọi E là điểm đối xứng với C qua D \(\Rightarrow E\left(-2;0\right)\) đồng thời E thuộc AB
\(\Rightarrow\overrightarrow{EB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB\) nhận (1;-2) là 1 vtpt
Phương trình AB:
\(1\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+2=0\)
A là giao điểm AH và AB nên: \(\left\{{}\begin{matrix}x+2y-1=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{1}{2};\dfrac{3}{4}\right)\)
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
Do B là giao điểm BE và BM nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+y-2=0\\2x+y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow B\left(1;1\right)\)
Đường thẳng AC vuông góc BE nên nhận (1;-1) là 1 vtpt
Phương trình AC (qua A) có dạng:
\(1\left(x+2\right)-1\left(y-0\right)=0\Leftrightarrow x-y+2=0\)
Do C thuộc AC nên tọa độ có dạng: \(C\left(c;c+2\right)\)
Gọi M là trung điểm AC \(\Rightarrow M\left(\dfrac{c-2}{2};\dfrac{c+2}{2}\right)\)
Do M thuộc BM nên tọa độ thỏa mãn:
\(2\left(\dfrac{c-2}{2}\right)+\dfrac{c+2}{2}-3=0\Rightarrow c=\dfrac{8}{3}\)
\(\Rightarrow C\left(\dfrac{8}{3};\dfrac{14}{3}\right)\)
Tọa độ A là:
2x-3y+12=0 và 2x+3y=0
=>x=-3 và y=2
Tọa độ M, M là trung điểm của BC là M(x;-3x/2)
Phương trình BC sẽ là: 3x+2y+c=0
Thay x=4 và y=-1 vào BC, ta được:
3*4+2*(-1)+c=0
=>c+12-2=0
=>c=-10
=>BC: 3x+2y-10=0
=>B(x;5-1,5x); y=5-1,5x
B(x;5-1,5x); C(4;-1); M(x;-3x/2)
Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2
=>2x=x+4 và -3x=5x-1
=>x=4 và -8x=-1(loại)
=>Không có điểm B nào thỏa mãn
Lời giải:
Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.
Gọi đây lần lượt là đường trung tuyến $BM,CN$
Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$
$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$
$\Rightarrow m=2; c=5$
Vậy tọa độ điểm C là $(1,5)$
$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$
$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$
Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)
Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0
Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)
Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)
Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)
Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)
Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH
Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM
Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)
Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)
Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)
Lần sau em đăng vào học 24 nhé!
Hướng dẫn:
Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C
A ( a; 3 - a); C ( c: -2c -1 )
Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)
=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM
=> tìm đc tọa độ B theo a và c
Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c
Lại có: AB vuông CH => Thêm 1 phương trình theo a và c
=> Tìm đc a, c => 3 đỉnh
Vì \(C\left(x_C;y_C\right)\) thuộc đồ thị hàm số \(x+y-5=0\) nên ta có \(x_C+y_C-5=0\)
\(\Leftrightarrow y_C=-x_C+5\Rightarrow C\left(x_C;-x_C+5\right)\)
phương trình đường thẳng BC có dạng \(y=ax+b\)
Vì đths \(y=ax+b\) vuông góc vs đths \(2x-5y+3=0\) nên ta có \(a.\dfrac{2}{5}=-1\Leftrightarrow a=\dfrac{-5}{2}\)
Vì B, C thuộc đths \(y=\dfrac{-5}{2}x+b\) nên ta có:
\(\left\{{}\begin{matrix}\dfrac{-5}{2}.3+b=5\\\dfrac{-5}{2}.x_C+b=-x_C+5\end{matrix}\right.\)
\(\Rightarrow\dfrac{-5}{2}\left(3-x_c\right)=x_c\)
\(\Rightarrow x_c=5\Rightarrow C\left(5;-10\right)\)
Vì A thuộc đths 2x-5y+3=0 nên ta có \(2x_A-5y_A+3=0\)(1)
Gọi M là trung điểm của AB, ta có \(\left\{{}\begin{matrix}x_M=\dfrac{x_A+3}{2}\\y_M=\dfrac{y_A+5}{2}\end{matrix}\right.\)\(\Rightarrow M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\)
Vì \(M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\) thuộc đths x+y-5=0 nên ta có\(\dfrac{x_A+3}{2}+\dfrac{y_A+5}{2}-5=0\)
\(\Leftrightarrow x_A+3+y_A+5-10=0\)
\(\Leftrightarrow x_A+y_A-2=0\)(2)
Từ (1), (2), ta có \(\left\{{}\begin{matrix}2x_A-5y_A+3=0\\x_A+y_A-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_A=1\\y_A=1\end{matrix}\right.\Rightarrow A\left(1;1\right)\)
Thank b