K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH: 2x+5y+3=0

=>BC: 5x-2y+c=0

Thay x=3 và y=5 vào BC, ta được:

c+15-10=0

=>c=-5

=>5x-2y-5=0

Tọa độ C là:

5x-2y-5=0 và x+y-5=0

=>5x-2y=5 và x+y=5

=>x=15/7 và y=20/7

=>C(15/7;20/7)

AH: 2x+5y+3=0

=>A(x;-2/5x-3/5)

CM: x+y-5=0

=>M(-y+5;y)

Theo đề, ta có: x+3=2(-y+5) và -2/5x-3/5+5=2y

=>x+3+2y=10 và -2/5x+17/5-2y=0

=>x+2y=7 và -2/5x-2y=-17/5

=>x=6 và y=1/2

=>A(6;-3); B(3;5); C(15/7;20/7)

vecto AB=(-3;8)

=>VTPT là (8;3)

=>Phương trình AB là:

8(x-3)+3(y-5)=0

=>8x-24+3y-15=0

=>8x+3y-39=0

A(6;-3); C(15/7;20/7)

vecto AC=(-20/7;41/7)

=>VTPT là (41/7;20/7)

Phương trình AC là:

41/7(x-6)+20/7(y+3)=0

=>41(x-6)+20(y+3)=0

=>41x-246+20y+60=0

=>41x+20y-186=0

19 tháng 3 2020

Ta có : \(\overrightarrow{n_{AH}}=\left(3;1\right)\Rightarrow\overrightarrow{u_{AH}}=\overrightarrow{n_{BC}}=\left(1;-3\right)\)

PTTQ BC đi qua điểm B và nhân \(\overrightarrow{n_{BC}}\) làm VTPT :

\(1\left(x-2\right)-3\left(y+7\right)=0\)

\(\Leftrightarrow x-3y-23=0\)

Gọi \(M\left(a;b\right)\) . Vì \(M\in CM\Rightarrow a+2b+7=0\Rightarrow b=\frac{-a-7}{2}\) . Do đó \(M\left(a;\frac{-a-7}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a-2\\y_A=2y_M-y_B=-a\end{matrix}\right.\)

\(A\in AH\) \(\Rightarrow3\left(2a-2\right)-a+11=0\) \(\Leftrightarrow a=-1\)

\(\Rightarrow A\left(-4;1\right);M\left(-1;-3\right)\)

\(\overrightarrow{u_{AB}}=\left(6;-8\right)\Rightarrow\overrightarrow{n_{AB}}=\left(8;6\right)\)

PTTQ của AB : \(8\left(x-2\right)+6\left(y+7\right)=0\)

\(\Leftrightarrow4x+3y+13=0\)

\(C=CM\cap BC\Rightarrow C\left(5;-6\right)\)

\(\overrightarrow{u_{AC}}=\left(9;-7\right)\Rightarrow\overrightarrow{n_{AC}}=\left(7;9\right)\)

PTTQ của AC : \(7\left(x-5\right)+9\left(y+6\right)=0\)

\(\Leftrightarrow7x+9y+19=0\)

19 tháng 3 2020

Gọi $A\left( {{x}_{A}};{{y}_{A}} \right);C\left( {{x}_{C}};{{y}_{C}} \right)$

Phương trình đường cao qua $A:\left( d \right):3x+y+11=0$

$\overrightarrow{{{u}_{d}}}=\left( 3;1 \right)\Rightarrow \overrightarrow{AC}.\overrightarrow{u{{ & }_{d}}}=3\left( {{x}_{C}}-{{x}_{A}} \right)+1\left( {{y}_{C}}-{{y}_{A}} \right)=0$

Phương trình trung tuyến qua $C:\left( d' \right):x+2y+7=0$

$d\cap AB=M\left( \dfrac{2+{{x}_{A}}}{2};\dfrac{{{y}_{A}}-7}{2} \right)$

Ta có hệ phương trình: \(\left\{ \begin{array}{l} 3\left( {{x_C} - {x_A}} \right) + {y_C} - {y_A} = 0\\ 3{x_A} + {y_A} + 11 = 0\\ {x_C} + 2{y_C} + 7 = 0\\ \dfrac{{2 + {x_A}}}{2} + 2.\dfrac{{{y_A} - 7}}{2} + 7 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_A} = - 4\\ {y_A} = 1\\ {x_C} = - 1\\ {y_C} = - 8 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow A\left( { - 4;1} \right);C\left( { - 1; - 8} \right) \Rightarrow \overrightarrow {AB} = \left( {2; - 8} \right);\overrightarrow {AC} = \left( {3; - 9} \right);\overrightarrow {BC} = \left( { - 3; - 1} \right)\\ AB:2\left( {x + 4} \right) - 8\left( {y - 1} \right) = 0 \Rightarrow 2x - 8y + 16 = 0\\ AC:3\left( {x + 1} \right) - 9\left( {y + 8} \right) = 0 \Rightarrow 3x - 9y - 69 = 0\\ BC: - 3\left( {x + 1} \right) - 1\left( {y + 8} \right) = 0 \Rightarrow - 3x - y - 11 = 0 \end{array}\)

BM: 2x-y+1=0

=>M(x;2x+1)

CN: x+y-4=0

=>C(-y+4;y)

Theo đề, ta có: -y+4+(-2)=2x và y+3=2(2x+1)

=>4x+2-y-3=0 và 2x+y-2=0

=>4x-y-1=0 và 2x+y-2=0

=>x=1/2 và y=1

=>M(1/2;2); C(3;1)

Tọa độ G là:

2x-y+1=0 và x+y-4=0

=>x=1 và y=3

G(1;3); B(x;y); M(1/2;2)

Theo đè, ta có; vecto BG=2/3vecto BM

=>1-x=2/3x và 3-y=2/3(2-y)

=>1-5/3x=0 và 3-y-4/3+2/3y=0

=>x=3/5 và y=5

=>B(3/5;5); A(-2;3); C(3;1)

vecto BA=(-2,6;-2)

=>VTPT là (2;2,6)=(10;13)

Phương trình BA là:

10(x+2)+13(y-3)=0

=>10x+20+13y-39=0

=>10x+13y-19=0

vecto AC=(5;-2)

=>VTPT là (2;5)

Phương trình AC là:

2(x-3)+5(y-1)=0

=>2x-6+5y-5=0

=>2x+5y-11=0

vecto BC=(2,4;-4)

=>VTPT là (5;3)

Phương trình BC là

5(x-3)+3(y-1)=0

=>5x-15+3y-3=0

=>5x+3y-18=0

6 tháng 10 2017

\(C\left(x_C;y_C\right)\) thuộc đồ thị hàm số \(x+y-5=0\) nên ta có \(x_C+y_C-5=0\)

\(\Leftrightarrow y_C=-x_C+5\Rightarrow C\left(x_C;-x_C+5\right)\)

phương trình đường thẳng BC có dạng \(y=ax+b\)

Vì đths \(y=ax+b\) vuông góc vs đths \(2x-5y+3=0\) nên ta có \(a.\dfrac{2}{5}=-1\Leftrightarrow a=\dfrac{-5}{2}\)

Vì B, C thuộc đths \(y=\dfrac{-5}{2}x+b\) nên ta có:

\(\left\{{}\begin{matrix}\dfrac{-5}{2}.3+b=5\\\dfrac{-5}{2}.x_C+b=-x_C+5\end{matrix}\right.\)

\(\Rightarrow\dfrac{-5}{2}\left(3-x_c\right)=x_c\)

\(\Rightarrow x_c=5\Rightarrow C\left(5;-10\right)\)

Vì A thuộc đths 2x-5y+3=0 nên ta có \(2x_A-5y_A+3=0\)(1)

Gọi M là trung điểm của AB, ta có \(\left\{{}\begin{matrix}x_M=\dfrac{x_A+3}{2}\\y_M=\dfrac{y_A+5}{2}\end{matrix}\right.\)\(\Rightarrow M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\)

\(M\left(\dfrac{x_A+3}{2};\dfrac{y_A+5}{2}\right)\) thuộc đths x+y-5=0 nên ta có\(\dfrac{x_A+3}{2}+\dfrac{y_A+5}{2}-5=0\)

\(\Leftrightarrow x_A+3+y_A+5-10=0\)

\(\Leftrightarrow x_A+y_A-2=0\)(2)

Từ (1), (2), ta có \(\left\{{}\begin{matrix}2x_A-5y_A+3=0\\x_A+y_A-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_A=1\\y_A=1\end{matrix}\right.\Rightarrow A\left(1;1\right)\)

8 tháng 10 2017

Thank b

21 tháng 3 2021

undefined

26 tháng 2 2020

Từ gt=>B(1;4) và N(3;5)(CN cắt AB)=>A(5;6)

G là trọng tâm tam giác->G(6;-1)

=>NG=\(3\sqrt{5}\)

Vì C thuộc CN=> C(c;11-2c)

Vì CG=2GN=>\(CG=6\sqrt{5}\Rightarrow CG^2=180\Rightarrow\left(6-c\right)^2+\left(-1-\left(11-2c\right)\right)^2=180\)

\(\Leftrightarrow\left[{}\begin{matrix}c=0\\c=12\end{matrix}\right.\)

Xét C(0;11)

Xét tích(0-2.11+7)(6-2.(-1)+7)=-225<0=>C,G khác phía so với AB(Loại)

=>C(12;-13)

Khi đó ta sẽ tìm được phương trình hai cạnh còn lại

NV
6 tháng 4 2021

Đường thẳng BC vuông góc AH nên nhận (1;-3) là 1 vtpt

Phương trình BC: \(1\left(x-2\right)-3\left(y+7\right)=0\Leftrightarrow x-3y-23=0\)

Do M thuộc CM nên tọa độ có dạng \(M\left(-2m-7;m\right)\)

M là trung điểm AB \(\Rightarrow A\left(-4m-16;2m+7\right)\)

Mà A thuộc AH nên:

\(3\left(-4m-16\right)+\left(2m+7\right)+11=0\Rightarrow m=-3\Rightarrow A\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(6;-8\right)\Rightarrow\) đường thẳng AB nhận (4;3) là 1 vtpt \(\Rightarrow\) pt AB là...

C là giao điểm BC và CM nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+2y+7=0\\x-3y-23=0\end{matrix}\right.\) \(\Rightarrow C\left(5;-6\right)\Rightarrow\overrightarrow{BC}=...\Rightarrow\) phương trình BC