K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

A B D C H E K I

Trong tia đối của tia HB và ED lấy điểm K  và I sao cho : \(HK=EI\)

Theo tính chất cạnh đối diện với góc , chứng minh được \(KE< KC\)

Ta dễ dàng chứng minh được \(\Delta KHE=\Delta IEH\)(c-g-c)

Suy ra \(KE=IH\)\(< =>IH< KC\)

Đến đây mình chịu rồi 

23 tháng 6 2020

VÌ CẬU NÓI CÂU a) VÀ CÂU b) cậu làm đc r nên mk sẽ k giải phần đấy. Mk sẽ giải nguyên phần c) thôi 

Làm

Từ E kẻ EK vuông góc với BC tại K 

vì DH vuông góc với AC 

ED vuông góc AE hay ED vuông góc với AC=> BH // ED

=> góc HBE = BED ( so le trong ) (1)

mặt khác BD = DE theo câu a 

=> tam giác BDE cân tại D => góc EBD = BED (2)

Từ 1 , 2 suy ra góc HBE = EBK

Xét 2 TG vuông BHE và BKE có

HE là cạnh chung

góc HBE = EBK (theo cmt )

Do đó : tam giác BHE = BKE ( ch_gnh )

=> EH = EK

Trong tam giác EKC có EC là cạnh huyền 

=> EC > EK => EC > EH 

HỌC TỐT Ạ