Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải câu a nha ( bạn nào biết làm câu b với câu c thì giúp bạn ấy )
a) Gọi AD ; BE ; CF là đường cao của t/g ABC
=> CE vuông góc với AB
BE vuông góc với AC
Mà Bx vuông góc với AB
=> Bx // CE
Cy vuông góc với AC
=> Cy // BE
=> tứ giác BHCD là hình bình hành
a: Xét tứ giác BHCD có
BH//CD
BD//CH
Do đó: BHCD là hình bình hành
b: Ta có: BHCD là hình bình hành
nên Hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường
mà I là trung điểm của BC
nên I là trung điểm của HD
1: Xét ΔABC có BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC
Xét tứ giác BHCD có
BH//CD
BD//CH
=>BHCD là hình bình hành
2: BHCD là hình bình hành
=>BC cắt HD tại trung điểm của mỗi đường
=>M là trung điểm của HD
Xét ΔDAH có
M,O lần lượt là trung điểm của DH,DA
nên MO là đường trung bình
=>AH=2MO
+ Xét tứ giác BHCD có
BD vuông góc AB; CH vuông góc AB => BD//CH (cùng vuôn góc AB) (1)
CD vuông góc AC; BH vuông góc AC => CD//BH (cùng vuông góc AC) (2)
Từ (1) và (2) => BHCD là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
+ Nối H với D cắt BC tại O'
=> O'B=O'C (t/c đường chéo hình bình hành) mà O là trung điểm BC => O trùng O' => H; O; D thẳng hàng
a: Xét tứ giác BHCD có
BH//CD
BD//CH
DO đó: BHCD là hình bình hành