K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

a) Ta có: \(\angle BEC=\angle BFC=90\Rightarrow BCCEF\) nội tiếp

Ta có: \(\angle AFC=\angle ADC=90\Rightarrow ACDF\) nội tiếp

b) Dễ dàng chứng minh được AEHF,EHDC nội tiếp

\(\Rightarrow\angle FEH=\angle FAH=\angle FCB=\angle HED\)

\(\Rightarrow EB\) là phân giác \(\angle DEF\)

Vì \(EF\parallel XY\) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AF}{AE}\left(1\right)\)

Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle AFE=\angle ACB\end{matrix}\right.\)

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AF}{AE}=\dfrac{AC}{AB}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AX}{AY}=\dfrac{AC}{AB}\)undefined

a: Xét tứ giác BCEF có 

\(\widehat{BFC}=\widehat{BEC}\)

nên BCEF là tứ giác nội tiếp

Xét tứ giác CDHE có 

\(\widehat{HDC}+\widehat{HEC}=180^0\)

Do đó: CDHE là tứ giác nội tiếp