K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2016

a. xét tam giác ABE và tam giác ACD co:AB=AD; góc BAE=gocDAC; AE=AC suy ra tam giác ABE=tam giác ADC(c.g.c);suy ra: BE=DC;gocABE=góc ACD. đặt giao điểm của DC và AB làO;BE và DC là K ta có:

góc ADO+góc DOA+góc OAM=180

góc OBK+gócBOK+gócOKB=180

mà: góc ADO=góc OBA;DOA=BOK suy ra:OAM=OKB;MÀ OAM=90=>OKB=90=>BEvuông góc với DC

4 tháng 6 2015

BẠN TỰ VẼ HÌNH NHA

A)TG DAB VUÔNG CÂN TAI SUY RA DA=AB VÀ DAB=90 ĐỘ

TG EAC VUÔNG TẠI A SUY RA AE=AC VÀ EAC=90 ĐỘ

TA CÓ DAC+BAC=90+BAC=DAC

VÀ EAC+BAC=90+BAC=BAE

TỪ 2 ĐIỀU TRÊN SUY RA DAC=BAE

TG DAC VÀ TG BAE CÓ 

DA=AB

DAC=BAE

AC=AE

SUY RA TG DAC=TG BAE (C G C) SUY RA DC=BE VÀ ADC=ABE

GỌI T LÀ GIAO ĐIỂM CỦA DC VÀ BE

TA CÓ ADC+CDB+DBA=90(TG DAB VUÔNG TẠI A)

         ABE+CDB+DBA=90

          DBT+CDB=90 SUYRA DTE=90 ĐỘ(DO DTE=DBT+CDB)

SUY RA DC VUÔNG GÓC VỚI BE TẢI T

4 tháng 6 2015

B)TA CÓ 

TG MNE=AND(C G C) SUY RA  ME=AD MÀ AD=AB(TG DAB VUÔNG CÂN TẠI A) SUY RA ME =AB

TG MNE=AND SUY RA GÓC MEN=ADN 

TA CÓ ADN+AED=90 (TG DAE VUÔNG TẠI A)

TỪ 2 DÒNG TRÊN SUY RA MEN+AED=90 NÊN MEA=90 ĐỘ 

CMĐ TG ABC=EMA(MDO ME=AB,MEA=BAC=90,EA=AC)(C G C) SUY RA GÓC MAE=BCA

C)GỌI I LÀ GIAO ĐIỂM CỦA MA VÀ BC

TA CÓ MAE+EAC+IAC=180 MÀ EAC=90 ĐỘ SUY RA MAE+IAC=90

MÀ MAE=BCA

TỪ 2 DÒNG TRÊN SUY RA BCA+IAC=90 

MÀ IAC+BCA=AIB(GÓC NGOÀI CỦA TG AIC VUÔNG TẠI I)

TỪ 2 ĐIỀU TRÊN SUY RA AIB=90 ĐỘ SUY RA MA VUÔNG GÓC VỚI BC TẠI I

CHỖ NÀO BN KO HIỂU THÌ CỨ HỎI MÌNH NHA

28 tháng 10 2023

A B C D E H I N M

a/

Ta có

\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC

\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)

Ta có

tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)

\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)

Xét tg vuông NDA và tg vuông BAH có

\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)

AD=AB (cạnh bên tg cân)

=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

=> DN = AH

C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH

b/

Ta có

\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM

Xét tg vuông DIN và tg vuông EIM có

DN=EM (cùng bằng AH)

\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)

=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DI=IE

 

 

 

 

14 tháng 3 2017

jtfjtrijykyklyktylkguj

22 tháng 6 2017

Xin lỗi mink mới học có lớp 5 thôi à nên MINK ko thể giúp bn đc xin lỗi NGUYỄN ANH TÚ