K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

\(a^2=\left(m^2+n^2\right)^2=m^4+n^4+2m^2n^2.\)

\(b^2+c^2=\left(m^2+n^2\right)^2+4m^2n^2=m^4+n^4-2m^2n^2+4m^2n^2=m^4+n^4+2m^2n^2\)

=> \(a^2=b^2+c^2\) => a; b; c là cạnh của 1 tam giác vuông có cạnh huyền là a 2 cạnh góc vuông là b và c

7 tháng 11 2016

a2 = (m2 + n2) = m4 + 2m2.n2 + n4

b2 = (m2 - n2)2   = m4 - 2m2.n2 + n4 

c2 = (2mn)2 = 4m2.n2 

Nhận xét:  a2 - b2 = c2 => a2 = b2 + c2

Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông

13 tháng 5 2019

Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé

Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)

Qua E kẻ đường thẳng song song BF cắt AC tại K

Theo ta-lét ta có:

\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)

Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I

Theo talet ta có

\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)

=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)

=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)

Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)

=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)

Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)

10 tháng 6 2016

a) Áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(M=\left(b^2+c^2-a^2\right)^2-4b^2c^2=\left(b^2+c^2-2bc-a^2\right)\left(b^2+c^2+2bc-a^2\right)=\left[\left(b-c\right)^2-a^2\right].\left[\left(b+c\right)^2-a^2\right]=\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

b) Nếu a,b,c là độ dài các cạnh của tam giác thì ta có : \(\hept{\begin{cases}a+b>c>0\\b+c>a>0\\a+c>b>0\end{cases}\Leftrightarrow\hept{\begin{cases}b-c-a< 0\left(1\right)\\b-c+a>0\left(2\right)\\b+c-a>0\left(3\right)\end{cases}}}\)

Nhân (1) , (2) , (3) theo vế cùng với a+b+c>0 được M<0

c) Dễ thấy rằng : Trong phân tích M thành nhân tử, ta thấy có xuất hiện thừa số (a+b+c)

Mà a+b+c chia hết cho 6 nên suy ra M chia hết cho 6

13 tháng 11 2017

CÔNG THỨC TÍNH CHU VI TAM GIÁC, CÁCH TÍNH CHU VI TAM GIÁC ĐÚNG NHẤT
Công thức tính chu vi tam giác, cách tính chu vi tam giác cũng được phân chia theo cách tính diện tích tam giác cân, vuông, đều. Bởi mỗi dạng tam giác đều có một cách tính chu vi khác nhau.
- Công Thức Tính Chu Vi Tam Giác Thường
Công thức tính chu vi tam giác thường áp dụng cho tất cả các dạng tam giác thường phổ biến với các cạnh thay đổi.
P = A+B+C
Trong đó:
+ a và b và c : Ba cạnh của tam giác thường
- Ví Dụ: Cho một tam giác thường ABC có chiều dài các cạnh lần lượt là 4,5,6 cm. Hỏi diện tích tam giác thường bằng bao nhiêu?
 cach tinh chu vi tam giac
Dựa theo công thức, chúng ta có thể tính chu vi tam giác như sau:
Ta có: a=AB=4 cm, b=AC=5 cm, c=BC=6cm
Suy ra: P = a+b+c = 4 + 5 + 6 = 15 cm
Như vậy chu vi tam giác ABC bằng 15 cm.
- Công Thức Tính Chu Vi Tam Giác Vuông
Công thức tính chu vi tam giác vuông áp dụng cho các dạng tam giác có đường nối vuông góc giữa đỉnh và đáy của một tam giác.
P = A+B+H
Trong đó:
+ a và b : Hai cạnh của tam giác vuông
+ h : chiều cao nối từ đỉnh xuống đáy của một tam giác.
- Ví Dụ: Có một tam giác vuông với chiều dài hai cạnh AC và BC lần lượt là 5 và 6cm. Chiều dài cạnh AB là 7cm. Hỏi chu vi tam giác vuông ABC bằng bao nhiêu.
huong dan tnh chu vi tam giac
Dựa theo công thức tính chu vi tam giác vuông, ta tính chu vi tam giac vuông như sau:
Ta có: a = AC = 6cm, b = BC = 5cm và h = AB = 4cm
Suy ra P = a+b+h = 6 + 5 + 4 = 15 cm
- Công Thức Tính Chu Vi Tam Giác Cân
Do tam giác cân có ba cạnh bằng nhau và không thay đổi nên cách tính chu vi tam giác cân cũng khá dễ dàng.
P = A X 3
Trong đó:
a là một cạnh bất kỳ trong tam giác cân
- Ví Dụ: Cho một tam giác cân với chiều dài ba cạnh bằng nhau đều bằng 5cm. Hỏi chu vi của tam giác cân này bằng bao nhiêu?
 tinh chu vi tam giac
Theo công thức tính chu vi tam giác cân, chúng ta có cách giải như sau:
a = b = c = 5cm
Suy ra: P = ax3 = 5 x 3 = 15 cm
Cách tính chu vi tam giác cân khá dễ phải không?
Đa số công thức tính chu vi tam giác đều được đưa vào phần câu hỏi thêm của nhiều bài toán yêu cầu tính diện tích tam giác bằng công thức tính tam giác có sẵn áp dụng cho cả ba dạng tam giác phổ biến là tam giác thường, vuông. Do đó nếu bạn đã nắm và triển khai đúng các tính diện tích tam giác, bạn có thể áp dụng thêm công thức tính chu vi tam giác để kiếm thêm điểm số hoặc dễ dàng giải quyết vấn đề theo ý muốn.
Nếu bạn phải nhập liệu và tính toán trên Word, việc nắm được cách cách chèn công thức toán học trong Word cũng rất quan trọng bởi cách chèn công thức toán học trong Word khá khác biệt so với việc vẽ và viết trên giấy, người dùng sẽ cần biết cách kết hợp giữa Shape và các chữ để tạo nên một hình ảnh mô tả bài toán đúng cách nhất.
http://thuthuat.taimienphi.vn/cong-thuc-tinh-chu-vi-tam-giac-22867n.aspx 
Chúc các bạn thành công!

1.Cho các số nguyên a,b,c thỏa mãn (a-b)^3+(b-c)^3+(c-a)^3=210. Tính A=/a-b/+/b-c/+/c-a/2.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.a) C/m EA.EB=ED.ECb) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.c) Kẻ DH_I_BC(H thuộc BC). Gọi P;Q lần lượt là trung điểm của...
Đọc tiếp

1.Cho các số nguyên a,b,c thỏa mãn (a-b)^3+(b-c)^3+(c-a)^3=210. Tính A=/a-b/+/b-c/+/c-a/

2.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.

a) C/m EA.EB=ED.EC

b) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.

c) Kẻ DH_I_BC(H thuộc BC). Gọi P;Q lần lượt là trung điểm của đoạn thẳng BH;DH. C/m CQ_I_PD

     (bài này mik làm dk câu a rồi.mn giúp mik câu b với câu c với!)

3.Tìm các số nguyên a và b sao cho A(x)=x^4+ax^2+b chia hết cho B(x)=x^2+x+1

4.C/m với mọi n thuộc Z thì n^2+5n+16 không chia hết cho 169

5.Cho a,b,c>0 t/m a+b+c=1. c/m ab/(a+1)+bc/(b+1)+ca/(c+1)<=1/4

6. Tìm đa thức f(x) biết f(x) chia x+2 dư 10; chia x-2 dư 24; chia x^2-4 được thương là --5x và còn dư.

7. C/m a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2

8. Cho hình vuông ABCD trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ AH _I_ BF(H thuộc BF); AH cắt DC và BClaanf lượt tại M và N.

a) c/m AEMD là hình chữ nhật 

b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. C/m AC=2EF

c) C/m 1/(AD^2)=1/(AM^2)+1/(AN^2)

3
14 tháng 2 2015

1. Bài này vế trái mình đã giải 1 lần rồi bạn.

Bạn dùng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) để có kết quả (a-b)(b-c)(c-a) = 70

70 = 2.5.7 do đó suy ra a-b=2, b-c=5, c-a=7. Suy ra A = 14.

Vì A là tổng 3 giá trị tuyệt đối nên nếu có hoán vị a-b, b-c, c-a thì kết quả vẫn ko đổi

 

14 tháng 2 2015

Bài 2 câu c mình cũng có giải rồi ko nhớ bạn của bạn nào. Bạn xem lại nhé

Còn câu b) : Gọi K là giao điểm của EM và BC thị EK vuông góc với BC vì M là trực tâm tam giác EBC. Sau đó bạn cm BM.BD = BK.BC ;  CM.CA = CK.CB. Bạn cộng từng vế là ra BM.BD + CM.CA = BC2 ko đổi