Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình giải theo cách lớp 5.
a) Có: \(AN+NC=AC\) mà \(AN=\dfrac{1}{2}NC\)
\(\Rightarrow\dfrac{1}{2}NC+NC=AC\Rightarrow\dfrac{3}{2}NC=AC\Rightarrow NC=\dfrac{2}{3}AC\)
\(2AN=\dfrac{2}{3}AC\Rightarrow AN=\dfrac{2}{3}.\dfrac{1}{2}AC=\dfrac{1}{3}AC\)
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}S_{ABC}\left(1\right)\)
\(\dfrac{S_{ACM}}{S_{ABC}}=\dfrac{AM}{AB}=\dfrac{1}{3}\Rightarrow S_{ACM}=\dfrac{1}{3}S_{ABC}\left(2\right)\)
Từ (1) và (2) suy ra:
\(S_{ABN}=S_{ACM}\)
\(\Rightarrow S_{ABN}-S_{AMON}=S_{ACM}-S_{AMON}\)
\(\Rightarrow S_{MOB}=S_{NOC}\).
b) \(\dfrac{S_{AMC}}{S_{AMN}}=\dfrac{AC}{AN}=3\Rightarrow S_{AMC}=3S_{AMN}=3.4,5=13,5\left(cm^2\right)\)
\(\dfrac{S_{ABC}}{S_{AMN}}=\dfrac{AB}{AM}=3\Rightarrow S_{ABC}=3S_{AMN}=3.13,5=40,5\left(cm^2\right)\)
\(\dfrac{S_{NCB}}{S_{ABC}}=\dfrac{NC}{AC}=\dfrac{2}{3}\Rightarrow S_{NCB}=\dfrac{2}{3}S_{ABC}=\dfrac{2}{3}.40,5=27\left(cm^2\right)\)
Diện tích tam giác ANC = 1/3 diện tích tam giác AMC
vì hai tam giác này có chung chiều cao hạ từ đỉnh C mà đáy AN = 1/3 đáy AM
Diện tích tam giác AMC là :
36 x 3 = 108 ( cm2 )
Diện tích tam giác AMC = 2/3 diện tcihs tam giác ABC
vì 2 tam giác này có chung chiều cao hạ từ đỉnh A mà đáy MC = 2/3 đáy BC
a) Diện tích tam giác ABC là
108 : 2 x3 = 162 ( cm2 )
b) Nối B với N ta có diện tích tam giác BNM = 1/3 diện tích tam giác BNC
Vì hai tam giác này co chung chiều cao hạ từ đỉnh N mà đáy BM= 1/3 đáy BC
Diện tcihs tam giác ANC = 1/3 diện tcihs tam giác BNC
Diện tích tam giác ANC là :
36 x 3 = 108 ( cm2)
Diện tích tam giác ABN là :
162 - ( 108 + 36 ) = 18 ( cm2 )
Ta thấy hai tam giác ANC và BNC có chung cạnh NC mà diện tích tam giác ANC = 1/3 diện tích tam giác BNC
Nên chiều cao hạ từ đỉnh A = 1/3 chiều cao hạ từ đỉnh B ( AH = 1/3 BP)
Diện tích tam giác AKN = 1/3 diện h stam giác BNM
cạnh đáy KN mà chiều cao AH = 1/3 chiều cao BP
Ta thấy hai tam giác AKN và BKN có chung chiều cao hạ từ đỉnh N mà diện tích tam giác AKN = 1/3 diện tích tam giác
BKN nên đáy AK = 1/3 đáy BK vậy AK/BK = 1/3
Nối A với D; B với N
+) Xét tam giác NMA và NBM có chung chiều ao hạ từ N xuống AB; AM = BM
=> S(NMA) = S(NBM)
=> chiều cao hạ từ A xuống MN = Chiều cao hạ từ B xuống MN ( vì chung đáy MN)
=> S(AND) = S(BND) ( Vì chung đáy ND)
+) Xét tam giác DCN và DAN có chung chiều cao hạ từ D xuống AC; đáy CN = 1/2 đáy AN
=> S DCN = 1/2 S DAN
=> S(DCN) =1/2 S(BND) => S(DCN) = S(BCN) => đáy BC = CD ( vì chung chiều cao hạ từ N xuống BC)
Mik lm phần b trc nha!
----------------------------------------
AO = \(\frac{2}{3}\)AM suy ra OM = \(\frac{1}{3}\)AM.
M là trung điểm của BC suy ra BM = MC suy ra BM = \(\frac{1}{2}\)BC.
Ta có: \(S_{ABM}\)= \(\frac{1}{2}\)\(S_{ABC}\)vì:
+ Chung chiều cao hạ từ A xuống BC.
+ Đáy BM = \(\frac{1}{2}\)BC.
\(\Rightarrow\)\(S_{ABM}\)= 42 : 2 = 21 (cm2)
Ta lại có: \(S_{BOM}\)= \(\frac{1}{3}\)\(S_{AOB}\)vì:
+ Chung chiều cao hạ từ B xuống AM.
+ Đáy OM = \(\frac{1}{3}\)AM.
\(\Rightarrow\)\(S_{BOM}\)= 21 : 3 = 7 (cm2)
Đ/S: 7 cm2