K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Mình giải theo cách lớp 5.
a) Có: \(AN+NC=AC\) mà \(AN=\dfrac{1}{2}NC\)
\(\Rightarrow\dfrac{1}{2}NC+NC=AC\Rightarrow\dfrac{3}{2}NC=AC\Rightarrow NC=\dfrac{2}{3}AC\)
\(2AN=\dfrac{2}{3}AC\Rightarrow AN=\dfrac{2}{3}.\dfrac{1}{2}AC=\dfrac{1}{3}AC\)
\(\dfrac{S_{ABN}}{S_{ABC}}=\dfrac{AN}{AC}=\dfrac{1}{3}\Rightarrow S_{ABN}=\dfrac{1}{3}S_{ABC}\left(1\right)\)
\(\dfrac{S_{ACM}}{S_{ABC}}=\dfrac{AM}{AB}=\dfrac{1}{3}\Rightarrow S_{ACM}=\dfrac{1}{3}S_{ABC}\left(2\right)\)
Từ (1) và (2) suy ra:
\(S_{ABN}=S_{ACM}\)
\(\Rightarrow S_{ABN}-S_{AMON}=S_{ACM}-S_{AMON}\)
\(\Rightarrow S_{MOB}=S_{NOC}\).
b) \(\dfrac{S_{AMC}}{S_{AMN}}=\dfrac{AC}{AN}=3\Rightarrow S_{AMC}=3S_{AMN}=3.4,5=13,5\left(cm^2\right)\)
\(\dfrac{S_{ABC}}{S_{AMN}}=\dfrac{AB}{AM}=3\Rightarrow S_{ABC}=3S_{AMN}=3.13,5=40,5\left(cm^2\right)\)
\(\dfrac{S_{NCB}}{S_{ABC}}=\dfrac{NC}{AC}=\dfrac{2}{3}\Rightarrow S_{NCB}=\dfrac{2}{3}S_{ABC}=\dfrac{2}{3}.40,5=27\left(cm^2\right)\)
Hình NCB là tam giác nha bạn, không phải là tứ giác.