K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

A B C D E F H

Cô hướng dẫn nhé.

a) Do ABC là tam giác cân nên AE = AF, AC = AB 

Lại có \(\Delta AFC\sim\Delta ABH\left(g-g\right)\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow AF.AH=AB.AC\Rightarrow AE.AH=AC^2\)

b) Câu này đề ko đúng. Cô sửa lại \(\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4.AD^2}\)

 \(AD.BC=AB.CF\left(=\frac{S_{ABC}}{2}\right)\)

Vậy nên \(VP=\frac{AD^2+\frac{BC^2}{4}}{BC^2.AD^2}=\frac{AD^2+\left(\frac{BC}{2}\right)^2}{CF^2AB^2}=\frac{AD^2+BD^2}{CF^2AB^2}=\frac{AB^2}{CF^2.AB^2}=\frac{1}{CF^2}=VT\)

21 tháng 7 2018

VT,VPlà gì

27 tháng 10 2020

A B C O E F

Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"

Xét tg BCE có 

\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\) 

Xét tg BCF có

\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)

\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)

\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)

\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)

Xét tg ABC cũng áp dụng định lý đường phân giác có

\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\)  (1)

\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)

Thay (1) và (2)  vào (*) ta có

\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC

=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2

=> tam giác ABC vuông tại A (định lí pitago đảo)

b: góc HID+góc HKD=180 độ

=>HIDK nội tiếp

=>góc HIK=góc HDK

=>góc HIK=góc HCB

=>góc HIK=góc HEF

=>EF//IK

5 tháng 3 2017

Dễ mà bạn :)

6 tháng 3 2017

giup mình vs