Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Ta có: AB là đường trung trực của HD(gt)
⇔A nằm trên đường trung trực của HD
⇔AD=AH(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AC là đường trung trực của HE(gt)
⇔A nằm trên đường trung trực của HE
⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AE=AD(đpcm)
b) Xét ΔADH có AD=AH(cmt)
nên ΔADH cân tại A(Định nghĩa tam giác cân)
Ta có: ΔADH cân tại A(cmt)
mà AB là đường trung trực ứng với cạnh đáy HD(gt)
nên AB là đường phân giác ứng với cạnh HD(Định lí tam giác cân)
⇔AB là tia phân giác của \(\widehat{DAH}\)
⇔\(\widehat{DAH}=2\cdot\widehat{BAH}\)
Xét ΔAHE có AH=AE(cmt)
nên ΔAHE cân tại A(Định nghĩa tam giác cân)
Ta có: ΔAHE cân tại A(cmt)
mà AC là đường trung trực ứng với cạnh đáy HE(gt)
nên AC là đường phân giác ứng với cạnh HE(Định lí tam giác cân)
⇔AC là tia phân giác của \(\widehat{HAE}\)
⇔\(\widehat{HAE}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{DAH}+\widehat{EAH}=\widehat{DAE}\)(tia AH nằm giữa hai tia AD,AE)
mà \(\widehat{DAH}=2\cdot\widehat{BAH}\)(cmt)
và \(\widehat{HAE}=2\cdot\widehat{CAH}\)(cmt)
nên \(2\cdot\widehat{BAH}+2\cdot\widehat{CAH}=\widehat{DAE}\)
\(\Leftrightarrow\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
mà \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)(tia AH nằm giữa hai tia AB,AC)
nên \(\widehat{DAE}=2\cdot\widehat{BAC}\)(đpcm)
c) Ta có: AB là đường trung trực của HD(gt)
⇔AB vuông góc với HD tại trung điểm của HD
mà AB cắt HD tại I(gt)
nên AI⊥HD tại I và I là trung điểm của DH
Xét ΔADI vuông tại I và ΔAHI vuông tại I có
AD=AH(cmt)
AI chung
Do đó: ΔADI=ΔAHI(cạnh huyền-cạnh góc vuông)
AD = AH (AB là đường trung trực của DH)
AH = AE (AC là đường trung trực của EH)
=> AD = AE