Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
gọi giao điểm của DH và HE lần lượt là M và N giao điểm của DE và AC là O
ngại làm quá bài này dễ tui học rôi
viết dài tí thôi
góc AIC bằng 90 độ
chứng minh AH là tia phân giác của góc IHC ( tam giác ADI = tam giác AHI ; tam giác AOE = tam giác OAH ; góc ADI = góc AEO vì ta dễ chứng minh được AD = AE nên tam giác ADE cân)
suy ra góc IHB = góc OHC ( VÌ cùng phụ với 2 góc bằng nhau)
từ C kẻ CK vuông góc
từ C kẻ CP vuông góc với HK
thì tam giác vuông CPH =tam giác vuông HCK (vì góc KHC = góc BHI mà góc BHI = góc OHC ; HC chung )
suy ra KC = CP
từ C kẻ tiếp CF vuông góc với OE
thì tam giác vuông PCO = tam giác vuông FCO (vì ta chứng minh được góc POC = góc FOC ; KC chung)
nên PC = CF mà PC = CF nên có KC = KF từ đó ta xét tam giac vuông KIC = tam giác vuông FIC
suy ra IC là tia phân giác của góc 0IF
tự làm tiếp chứng minh góc IKA = góc OC
đôi chỗ viết nhầm
AD = AH (AB là đường trung trực của DH)
AH = AE (AC là đường trung trực của EH)
=> AD = AE