K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

mọi người giúp e với ạ e đg cần gấp

15 tháng 8 2021

a)Ta có: 62+82=102

   ⇒  AB2+AC2=BC2

  ⇒ ΔABC vuông tại A (Py-ta-go đảo)

b)Ta có:\(AB^2=BD.BC\Leftrightarrow BD=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\) (hệ thức lượng)

  Ta có: \(AC^2=CD.BC\Leftrightarrow CD=\dfrac{AC^2}{BC}=\dfrac{8^2}{10}=6,4cm\) (HTL)

  Ta có: \(AD.BC=AB.AC\Leftrightarrow AD=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8cm\) (HTL)

c)Vì P là hình chiếu của D trên AB

  ⇒DP⊥AB \(\Rightarrow\widehat{APD}=90^o\)

Xét ΔAPD và ΔADB có:

       \(\widehat{A}:chung\)

       \(\widehat{APD}=\widehat{ADB}=90^o\)

⇒ ΔAPD ∼ ΔADB (g-g)

 \(\Rightarrow\dfrac{AP}{AD}=\dfrac{AD}{AB}\Rightarrow AP.AB=AD^2\) (1)

Chứng minh tương tự,ta có: ΔADQ ∼  ΔACD (g-g)

                                      \(\Rightarrow\dfrac{AD}{AC}=\dfrac{AQ}{AD}\Rightarrow AC.AQ=AD^2\) (2)

Ta có: AD2 = BD.CD (HTL)   (3)

Từ (1)(2)(3)⇒AP.AB=AC.AQ=BD.CD=AD2

d)Xét tg APDQ có: \(\widehat{DPA}=\widehat{PAQ}=\widehat{AQD}=90^o\)

  ⇒ APDQ là hình chữ nhật

  ⇒ AD=PQ và \(\widehat{PDQ}=90^o\)

Ta có: AP.BP=DP2 (HTL trong ΔADB)

          AQ.CQ=DQ2 (HTL trong ΔADC)

⇒ AP.BP+AQ.CQ=DP2+DQ2=PQ2 (Py-ta-go trong ΔPDQ vuông tại D)

Mà PQ=AD ⇒ AP.BP+AQ.CQ=AD2

e) Ta có: PQ=AD (cmt)

Mà AD = 4,8 cm

⇒ PQ = 4,8 cm

 

 

7 tháng 4 2020

b) xét ∆ABC có AD là đường phân giác của góc A
=>BD/AB=DC/AC ( tính chất)
Áp dụng tính chất dãy tỉ số bằng nhau , được :
BD/AB=DC/AC=BD/6=DC/8=(BD+DC)/(6+8)=BD/14=10/14=5/7
==>BD=6×5:7≈4,3
==>DC=10-4,3≈5,7

7 tháng 4 2020

a,Áp dụng định lý Pi-ta-go vào tam giác ABC => tam giác ABC vuông tại A=> AH vuông góc vs BC

=> tam giác ABC đồng dạng vs tam giác HAC ( g.c.g)

b, Vì tam giác ABC vuông tại A nên ta có hệ thức: AC2=BC . HC => đpcm

c, có AD là tia phân giác của tam giác ABC => BD=CD=BC/2= 5cm

10 tháng 7 2018

hình tự vẽ nhé:

 \(BC=BH+HC=16+81=97\)

Áp dụng hệ thức lượng ta có:

     \(AB^2=BH.BC\)

\(\Rightarrow\)\(AB^2=16.97=1552\)

\(\Rightarrow\)\(AB=\sqrt{1552}=4\sqrt{97}\)

    \(AC^2=HC.BC\)

\(\Rightarrow\)\(AC^2=81.97=7857\)

\(\Rightarrow\)\(AC=\sqrt{7857}=9\sqrt{97}\)

    \(AH.BC=AB.AC\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}\)

\(\Rightarrow\)\(AH=\frac{4\sqrt{97}.9\sqrt{97}}{97}=36\)

    \(AD.AB=AH^2\)

    \(AE.AC=AH^2\)

suy ra:  \(AD.AB=AE.AC\)

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông

a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)

\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)

b: Xét ΔABC có BD là đường phân giác

nên AD/AB=CD/BC

=>AD/12=CD/14

=>AD/6=CD/7

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)

Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau