K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 8 2021
a: Xét tứ giác AEHF có
\(\widehat{EAF}=\widehat{AEH}=\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF
10 tháng 7 2021
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔEHB vuông tại E(gt)
mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)
nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
a, Xét \(\Delta ABC\) có:
\(BC^2=\left(5a\right)^2=25a^2\)
\(AB^2+AC^2=\left(3a\right)^2+\left(4a\right)^2=9a^2+16a^2=25a^2\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( ĐL Pytago đảo )
Xét tứ giác \(AEHF\)có
\(\widehat{EAF}=90^0\left(cmt\right)\)
\(\widehat{AEH}=90^0\left(HE\perp AB\right)\)
\(\widehat{AFH}=90^0\left(HF\perp AC\right)\)
\(\Rightarrow AEHF\)là hình chữ nhật (DHNB)
b, Xét \(\Delta AHB\), \(\widehat{AHB}=90^0,HE\perp AB\left(gt\right)\)
\(\Rightarrow AH^2=AE.AB\)( Hệ thức lượng trong tam giác vuông ) (1)
Xét \(\Delta AHC\), \(\widehat{AHC}=90^0,HF\perp AC\left(gt\right)\)
\(\Rightarrow AH^2=AF.AC\)( Hệ thức lượng trong tam giác vuông ) (2)
Từ (1) (2) ta có \(AE.AB=AF.AC\)
\(\Leftrightarrow\frac{AE}{AC}=\frac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ACB\)có
\(\widehat{A}\) chung
\(\frac{AE}{AC}=\frac{AF}{AB}\left(cmt\right)\)
\(\Rightarrow\Delta AEF\infty\Delta ACB\left(c-g-c\right)\)
c, Ta có \(EH\perp AB\), \(AC\perp AB\) \(\Rightarrow EH//AC\)(từ vuông góc đến song song)
\(FH\perp AC\), \(AB\perp AC\) \(\Rightarrow FH//AB\)(từ vuông góc đén song song)
-Xét ΔBEH vg tại E có EM là trung tuyến
=> \(ME=MH=MB=\frac{1}{2}BH\)
=> Δ MEH cân tại M
=> \(\widehat{MEH}=\widehat{MHE}\) mà \(\widehat{MHE}=\widehat{BCA}\) ( đồng vị - EH//AC)
=> \(\widehat{MEH}=\widehat{BCA}\) (1)
- Ta có: \(\widehat{HEF}=\widehat{HAF}\) (t/c HCN)
\(\widehat{HAF}+\widehat{BCA}=90^0\)
=> \(\widehat{HEF}+\widehat{BCA}=90^0\) (2)
Từ (1) và (2) =>\(\widehat{MEH}+\widehat{HEF}=90^0\) hay ME⊥EF (*)
+ Tương tự ta có: NF⊥EF (**)
Từ (*) và (**) => EM//FN => MEFN là hình thang
Mặt khác có: \(\widehat{MEF}=\widehat{EFN}=90^0\) (CMT)
=> MEFN là hình thang vuông( đpcm)
Ta có \(S_{EMNF}=\frac{1}{2}.\left(EM+FN\right).EF\)
Mà \(EM+FN=\frac{BH}{2}+\frac{CH}{2}=\frac{BH+CH}{2}=\frac{BC}{2}=\frac{5a}{2}=2,5a\)
Xét \(\Delta ABC\), \(\widehat{BAC}=90^0,AH\perp BC\)có
\(AB.AC=AH.BC\)( Hệ thức lượng trong tam giác vuông )
\(\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3a.4a}{5a}=2,4a\)
\(\Rightarrow S_{EMNF}=\frac{1}{2}\times2,5a\times2,4a=3a^2\)