K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

a: Xét ΔAIB và ΔAIC có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có

IH=IK

\(\widehat{HIN}=\widehat{KIM}\)

Do đó: ΔHIN=ΔKIM

=>IN=IM và HN=KM

ΔAHI=ΔAKI

=>AH=AK

AH+HN=AN

AK+KM=AM

mà AH=AK và HN=KM

nên AN=AM

=>A nằm trên đường trung trực của NM(1)

IN=IM(cmt)

nên I nằm trên đường trung trực của MN(2)

PN=PM

=>P nằm trên đường trung trực của MN(3)

Từ (1),(2),(3) suy ra A,I,P thẳng hàng

19 tháng 11 2023

cảm ơn bạn Nguyễn Lê Phước Thịnh ạ

 

22 tháng 12 2021

a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có

AI chung

IB=IC

Do đó: ΔAIB=ΔAIC

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

a: Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC
Do đó: ΔAIB=ΔAIC

b: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

Ta có: I là trung điểm của BC

nên IB=IC=3cm

=>AI=4cm

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác củaADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,BC, AD. Chứng minh:a) AC là tia phân giác của DAH .b) IH = IKBài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứngminh:a) Chứng minh AB //HKb) Chứng minh KAH...
Đọc tiếp

Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
 AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH 
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy

4
24 tháng 4 2020

mik ngu hình lắm xin lỗi nha

24 tháng 4 2020

ngu thì xen zô nói làm j

8 tháng 2 2022

hhhhhhhhhh

a: Xét ΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

góc ACI=góc HCI

=>ΔCAI=ΔCHI

=>IH=IA

b: Xét ΔIAK vuông tại A và ΔIHB vuông tại H có

IA=IH

góc AIK=góc HIB

=>ΔIAK=ΔIHB

=>IK=IB

=>ΔIKB cân tại I

1 tháng 12 2023

Để giải bài toán này, ta có thể sử dụng các định lý và tính chất trong hình học Euclid. Dưới đây là cách chứng minh cho từng phần:

a) Chứng minh tam giác AIB = tam giác AIC:

Ta có AB = AC (do đề bài cho)IA = IA (do cùng là một đoạn)IB = IC (do I là trung điểm của BC)Vậy tam giác AIB và tam giác AIC bằng nhau theo nguyên lý cạnh - cạnh - cạnh.

b) Chứng minh AI là tia phân giác của góc BAC:

Do tam giác AIB = tam giác AIC nên ∠BAI = ∠CAIVậy AI là tia phân giác của góc BAC.

c) Chứng minh IA là tia phân giác của góc HIK:

Do IH vuông góc AB và IK vuông góc AC nên ∠HIK = 90° + ∠BACMà AI là tia phân giác của góc BAC nên ∠HIA = ∠KIA = 1/2 ∠BACVậy ∠HIA + ∠KIA = ∠HIKVậy IA là tia phân giác của góc HIK.

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của \(\widehat{BAC}\)

c: Xét ΔAIH vuông tại H và ΔAIK vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAIH=ΔAIK

=>\(\widehat{HIA}=\widehat{KIA}\)

=>IA là phân giác của \(\widehat{HIK}\)