K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

góc ACI=góc HCI

=>ΔCAI=ΔCHI

=>IH=IA

b: Xét ΔIAK vuông tại A và ΔIHB vuông tại H có

IA=IH

góc AIK=góc HIB

=>ΔIAK=ΔIHB

=>IK=IB

=>ΔIKB cân tại I

18 tháng 11 2023

a: Xét ΔAIB và ΔAIC có

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔAIB=ΔAIC

b: ΔAIB=ΔAIC

=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có

AI chung

\(\widehat{HAI}=\widehat{KAI}\)

Do đó: ΔAHI=ΔAKI

=>IH=IK

c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có

IH=IK

\(\widehat{HIN}=\widehat{KIM}\)

Do đó: ΔHIN=ΔKIM

=>IN=IM và HN=KM

ΔAHI=ΔAKI

=>AH=AK

AH+HN=AN

AK+KM=AM

mà AH=AK và HN=KM

nên AN=AM

=>A nằm trên đường trung trực của NM(1)

IN=IM(cmt)

nên I nằm trên đường trung trực của MN(2)

PN=PM

=>P nằm trên đường trung trực của MN(3)

Từ (1),(2),(3) suy ra A,I,P thẳng hàng

19 tháng 11 2023

cảm ơn bạn Nguyễn Lê Phước Thịnh ạ

 

a: Xét ΔABI vuông tại A và ΔHBI vuông tại H có

BI chung

\(\widehat{ABI}=\widehat{HBI}\)

Do đó:ΔABI=ΔHBI

b: Xét ΔAIK vuông tại A và ΔHIC vuông tại H có

IA=IH

\(\widehat{AIK}=\widehat{HIC}\)

Do đó; ΔAIK=ΔHIC

Suy ra: AK=HC

mà BA=BH

nên BK=BC

=>ΔBKC cân tại B

a: XétΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

\(\widehat{ACI}=\widehat{HCI}\)

Do đó: ΔCAI=ΔCHI

Suy ra: CA=CH

b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có 

CA=CH

\(\widehat{ACB}\) chung

DO đó: ΔABC=ΔHKC

c: Ta có: ΔCKB cân tại C

mà CN là đường phân giác

nên CN là đường cao

a: XétΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

\(\widehat{ACI}=\widehat{HCI}\)

Do đó: ΔCAI=ΔCHI

Suy ra: CA=CH

b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có 

CA=CH

\(\widehat{ACB}\) chung

DO đó: ΔABC=ΔHKC

c: Ta có: ΔCKB cân tại C

mà CN là đường phân giác

nên CN là đường cao

a: Xét ΔBAI vuông tại Avà ΔBHI vuông tại H có

BI chung

góc ABI=góc HBI

=>ΔBAI=ΔBHI

b: ΔBAI=ΔBHI

=>BA=BH và IA=IH

=>BI là trung trực của AH

d: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại I

=>I là trực tâm

=>BI vuông góc KC