Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb).
Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).
b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.
Lại có HB = HE nên AD song song và bằng HE.
Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)
c) Lấy J là trung điểm AF.
Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.
Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.
Vậy nên HJ // AB // EF hay \(HJ\perp AF\)
Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Vậy thì HA = HF.
d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)
Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)
Nên \(\widehat{IFC}=\widehat{BAH}\)
Ta cũng có \(\widehat{HFE}=\widehat{JHF}\) (Hai góc so le trong)
\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)
\(\widehat{JHA}=\widehat{BAH}\) (Hai góc so le trong)
nên \(\widehat{HFE}=\widehat{BAH}\)
Vậy thì \(\widehat{IFC}=\widehat{HFE}\)
Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)
Hay \(HF\perp FI\)
a: Xét tứ giác ADCH có
M là trung điểm chung của AC và HD
góc AHC=90 độ
Do đó: ADCH là hình chữ nhật
b: Xét tứ giác ADHE có
AD//HE
AD=HE
Do đó: ADHE là hình bình hành