K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

3 tháng 5 2016

ai đó làm ơn giải hộ mình bài này với

3 tháng 5 2016

a) Áp dụng định lý PYTAGO vào tam giác ABC có

   BC^2=AB^2+AC^2

           = 9^2+12^2=225

BC= 15

Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC 

                                         => 1/2.AH = Sabc: BC = 3.6=> AH =7,2

Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K a) Chứng minh : Tam giác BDA ~ Tam giác KDC b) Chúng minh : Tam giác DBK ~ Tam giác DAC c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2 Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh : a) Tam giác ABH ~...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K 

a) Chứng minh : Tam giác BDA ~ Tam giác KDC 

b) Chúng minh : Tam giác DBK ~ Tam giác DAC 

c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2 

Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh : 

a) Tam giác ABH ~ Tam giác ADH 

b) HE2 = AE . EC 

c) Gọi M là giao điểm của BE và CD . Chứng minh tam giác DBM ~ Tam giác ECM 

Bài 3: Cho tam giác ABC vuông tại A . Đường cao AH 

a) Chứng minh : Tam giác ABC ~ Tam giác HBA 

b) Tính độ dài BC và AH ,biết  AB = 6 cm , AC = 8 cm 

c) Phân giác góc ACB cắt AH tại E , cắt AB tại D . Tính tỉ số diện tích của hai tam giác ACD và HCE 

1
5 tháng 5 2021

Bài 1 :

a, Xét tam giác BDA và tam giác KDC có:     

 Góc BDA= Góc KDC(đối đỉnh)

 Góc B= Góc K(90 độ)

=>Tam giác BDA đồng dạng với tam giác KDC(g.g)

b, 

Tam giác BDA đồng dạng với tam giác KDC ( cmt) => \(\frac{DB}{DA}=\frac{DK}{DC}\)

Xét tam giác DBK và tam giác DAC có:   

  Góc BDK= Góc DAC(đối đỉnh)

\(\frac{DB}{DA}=\frac{DK}{DC}\)

=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)

Bài 2 :

a) Xét tam giác ABH và tam giác AHD có:

\(\widehat{A}chung\)

\(\widehat{AHB}=\widehat{ADH}=90^o\)

 tam giác ABH đồng dạng với tam giác AHD (g-g)

b)T/tự: tam giác AHC đồng dạng với tam giác AEH (g-g)

⇒ \(\widehat{ACH}=\widehat{AHE}\) ( 2 góc tương ứng)

Tam giác AEH đồng dạng với tam giác HEC 

\(\widehat{ACH}=\widehat{AHE}\) (CM trên)

\(\widehat{AEH}=\widehat{HEC}\) (= 900)

\(\frac{AE}{HE}=\frac{EH}{EC}\)\(AE\cdot EC=EH\cdot EH=EH^2\)

c) tam giác ADC đồng dạng với tam giác ABE (g-g) vì:

\(\widehat{A}\) chung

\(\widehat{ADC}=\widehat{AEB}=90^O\)

 \(\widehat{ACD}=\widehat{ABE}\) ( 2 góc tương ứng)

Xét tam giác DBM và tam giác ECM có:

\(\widehat{ACD}=\widehat{ABE}\) (CM trên)

\(\widehat{DMB}=\widehat{EMC}\) (đối đỉnh)

 tam giác DBM đồng dạng với tam giác ECM (g-g)

 Bài 3 :

Bạn tự vẽ hình rồi đối chiếu kq nhé, có thể có sai sót đấy, ko chắc đúng hết đâu