K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Xét ΔADF và ΔCDE có 

DA=DC

\(\widehat{ADF}=\widehat{CDE}\)

DF=DE

Do đó: ΔADF=ΔCDE

Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do dó: AECF là hình bình hành

Suy ra: AF//EC

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

22 tháng 11 2017
Giúp mình gấp
23 tháng 11 2017

Ta co AB = AC  => Tam giác ABC là tam giác cân tại A 

Kẻ AM 

Xét hai tam giác AMB  và tam giác AMC có:

BM =MC ( Vì M là trung điểm của BC)

gÓC B = góc C ( vì ABC là tam giác cân)

AB = BC ( gt)

=> Tam giác ABM = tam giác AMC ( c.g.c)

10 tháng 1 2018

A B C M D E F G H

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :

AM ( cạnh chung )

AB = AC ( gt )

MB = MC ( gt )

Suy ra : \(\Delta AMB\)\(\Delta AMC\)( c.c.c )

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}\)( hai cạnh tương ứng ) mà \(\widehat{AMB}+\widehat{AMC}=180^o\)

\(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\frac{\widehat{BMC}}{2}=90^o\)\(\Rightarrow\)AM \(\perp\)BC

b) Xét \(\Delta ADF\)và \(\Delta CDE\)có :

DE = DF ( gt )

\(\widehat{EDC}=\widehat{FDA}\)( hai góc đối đỉnh )

DA = DC ( gt )

Suy ra : \(\Delta ADF\)\(\Delta CDE\)( c.g.c )

\(\Rightarrow\widehat{FAD}=\widehat{ECD}\)( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AF // EC

c) gọi H là giao điểm của BD và AE

Xét \(\Delta AHD\)vuông tại H có : \(\widehat{HAD}+\widehat{ADH}=90^o\)( 1 )

Xét \(\Delta BAD\) vuông tại A có : \(\widehat{ABD}+\widehat{BDA}=90^o\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{HAD}=\widehat{ABD}\)

Xét \(\Delta BAD\)và \(\Delta ACG\)có :

\(\widehat{DBA}=\widehat{GAC}\)( cmt )

AB = AC ( gt )

\(\widehat{BAD}=\widehat{ACG}\)( = \(90^o\))   

Suy ra : \(\Delta BAD\)\(\Delta ACG\)( g.c.g )

\(\Rightarrow AD=CG\)( hai cạnh tương ứng )

Mà \(AD=DC=\frac{AC}{2}\)

\(\Rightarrow CG=\frac{AC}{2}=\frac{AB}{2}\)( vì AB = AC )

\(\Rightarrow AB=2CG\)