Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu phải không bạn ?? Đề bài không có dữ liệu một góc nào thì làm kiểu gì ?
ABC cân nên AM là trung tuyến cũng là đường cao
Suy ra AMB = AMC = 90 độ
Mình mới giải đc câu a và câu 1 phần d) thôi nhưng muộn quá:
a)Xét 2 tam giac ACN va tam giac ABM co:
AB=AC(GT)
A chung
AN=AM(GT)
=>tam giac ACN=tam giac ABM(c.g.c).Mình mới làm tới đây thôi.Chúc ngủ ngon
a) Có: AM = CM = AC/2 (gt); AN = BN = AB/2 (gt)
Mà AC = AB (gt) nên AM = CM = AN = BN
Xét t/g ABM và t/g ACN có:
AB = AC (gt)
A là góc chung
AM = AN (cmt)
Do đó, t/g ABM = t/g ACN (c.g.c) (đpcm)
b) t/g ABC có AB = AC (gt) => t/g ABC cân tại A
=> ABC = ACB ( tính chất t/g cân) (1)
t/g ABM = t/g ACN (câu a)
=> ABM = ACN (2 góc tương ứng) (2)
Từ (1) và (2) => ABC - ABM = ACB - ACN
=> MBC = NCB
=> t/g BOC có góc bằng nhau (cân tại O) (đpcm)
c) Xét t/g ANF và t/g BNC có:
AN = NB (gt)
ANF = BNC ( đối đỉnh)
NF = NC (gt)
Do đó, t/g ANF = t/g BNC (c.g.c)
=> AF = BC (2 cạnh tương ứng)
AFN = BCN (2 góc tương ứng)
Mà AFN và BCN là 2 góc ở vị trí so le trong nên AF // BC (1)
Tương tự như vậy ta cũng có: t/g AME = t/g CMB (c.g.c)
AE = BC và AE // BC (2)
Từ (1) và (2) => AF và AE trùng nhau hay A,E,F thẳng hàng
Lại có: AE = AF = BC
Do đó A là trung điểm của EF (đpcm)
d) t/g AMN có AM = AN (câu a)
=> t/g AMN cân tại A
=> AMN = ANM ( tính chất t/g cân)
=> MAN = 180o - 2.AMN (3)
Ta cũng có: ABC = ACB (câu b)
=> CAB = 180o - 2.ACB (4)
Từ (3) và (4) => AMN = ACB
Mà AMN và ACB là 2 góc ở vị trí đồng vị nên MN // BC
Lại có: EF // BC (câu c) nên MN // BC // EF (đpcm)
a)Xét tam giác ABC có:
góc ABC + góc BAC + góc ACB =180 độ. Thay số:
60 độ + 90 độ + góc ACB = 180 độ
góc ACB =180 độ - (60 độ + 90 độ)
góc ACB = 30 độ
b)Xét tam giác AMN và tam giác CMN có:
AM = CM (M là trung điểm của AC)
MN chung
góc AMN = góc CMN =90 độ(MN vuông góc với AC)
Suy ra :tam giác AMN = tam giác CMN(c.g.c)
CÒN LẠI MÌNH CHƯA NGHĨ RA. MONG BẠN THÔNG CẢM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
tam giác ABM và tam giác ACM có: AB = AC (GT) góc ABM = góc ACM (vì AB = AC => tam giác ABC cân) BM = MC (GT) => tam giác ABM = tam giác ACM (c.g.c) => ˆ A M B = ˆ A M C (2 góc tương ứng) Mà ˆ A M B + ˆ A M C =1800 (kề bù) => ˆ A M B = ˆ A M C = 1 2 1800 = 900 Vậy ˆ A M B =900 ; ˆ A M C =900
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-60^o=40^o\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\) suy ra \(AB< AC< BC\).
Xét tứ giác \(ABDC\) có hai đường chéo \(AD,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABDC\) là hình bình hành.
Suy ra \(AB=CD\).
\(AB+AC=AB+CD>AD\) (bất đẳng thức tam giác trong tam giác \(ACD\))
Xét tam giác \(ACD\) có hai trung tuyến \(AN,CM\) cắt nhau tại \(K\) nên \(K\) là trọng tâm tam giác \(ACD\) suy ra \(CK=\dfrac{2}{3}CM\).
Mà \(BC=2CM\) suy ra \(BC=3CK\).
\(\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM.chung\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ \Rightarrow\widehat{AMB}=\widehat{AMC};\widehat{B}=\widehat{C};\widehat{BAM}=\widehat{CAM}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^0\Rightarrow\widehat{AMB}=\widehat{AMC}=90^0\)
Xét \(\Delta ABC:\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow2\widehat{B}=180^0-\widehat{A}=100^0\\ \Rightarrow\widehat{B}=\widehat{C}=50^0\)
Lại có \(\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{BAM}=\widehat{CAM}=\dfrac{1}{2}\widehat{BAC}=40^0\)