Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=180-80-60=40 độ
Vì góc A>góc B>góc C
=>BC>AC>AB
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB=CD
AB+AC=AB+BD>AD
c: Xét ΔADC có
AN,CM là trung tuyến
AN cắt CM tại K
=>K là trọng tâm
=>CK=2/3CM=2/3*1/2BC=1/3CB
=>BC=3CK
`a)`
`Delta ABC` có :
`hat(BAC)+hat(C_1)+hat(B)=180^0` ( đlý )
hay `80^0+hat(C_1)+60^0=180^0`
`=>hat(C_1)=40^0`
mà `hat(B)>hat(C_1)(60^0>40^0)`
nên `AC>AB`( Qhệ giữa góc và cạnh đối diện trong `Delta` )
`b)`
Có `M` là tđ của `BC`
`=>MB=MC`
Xét `Delta ABM` và `Delta CDM` có :
`{:(AM=DM(GT)),(hat(M_1)=hat(M_2)(đối.đỉnh)),(BM=MC(cmt)):}}`
`=>Delta ABM=Delta CDM(c.g.c)`
`=>AB=CD` ( 2 cạnh t/ứng )(đpcm)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hbh
=>AB=CD
b: ABDC là hbh
=>AB//CD
AB=CD
AB<AC
=>CD<AC
=>góc CAD<góc CDA
=>góc CAD<góc BAD
a: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔCBD có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBD cân tại C
Suy ra: CB=CD
\(\widehat{C}=180^o-\widehat{A}-\widehat{B}=180^o-80^o-60^o=40^o\)
Có \(\widehat{C}< \widehat{B}< \widehat{A}\) suy ra \(AB< AC< BC\).
Xét tứ giác \(ABDC\) có hai đường chéo \(AD,BC\) cắt nhau tại trung điểm mỗi đường nên \(ABDC\) là hình bình hành.
Suy ra \(AB=CD\).
\(AB+AC=AB+CD>AD\) (bất đẳng thức tam giác trong tam giác \(ACD\))
Xét tam giác \(ACD\) có hai trung tuyến \(AN,CM\) cắt nhau tại \(K\) nên \(K\) là trọng tâm tam giác \(ACD\) suy ra \(CK=\dfrac{2}{3}CM\).
Mà \(BC=2CM\) suy ra \(BC=3CK\).