Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng
a: Xét ΔABC có AB<AC
mà BH là hình chiếu của AB trên BC
và CH là hình chiếu của AC trên BC
nên HB<HC
Ta có:AB<AC
nên \(\widehat{B}>\widehat{C}\)
hay \(\widehat{BAH}< \widehat{CAH}\)
b: Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)
\(\widehat{BDA}+\widehat{HAD}=90^0\)
mà \(\widehat{CAD}=\widehat{HAD}\)
nên \(\widehat{BAD}=\widehat{BDA}\)
hay ΔBDA cân tại B
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
DO đó: ΔHAC=ΔHDC
a,Áp dụng định lý Pi-ta-go , ta có :
AB^2+AC^2=BC^2
12^2+AC^2=20^2
144+AC^2=400
AC^2=400-144
AC^2=256
\(\Rightarrow AC=\sqrt{256}=16\)
Ta có : BC>AC>AB
=> góc Â>B>C
b, Xét tg BAD và tg BHD vuông tại H
Có : AH=HD ( 2 tia đối )
B là góc chung
=> tg BAD = tg BHD
=> BA=BD ( hai cạnh tương ứng)
Mà : trong tg BAD có BA=BD
=> tg BAD cân
c và d : k pt lm
a) Vì tam giác ABC vuông tại A.
=> AB + AC = BC
Thay số: 6 + 8 =BC
=> BC= 14 cm
b) Vì 8 cm >6cm Mà cạnh AB đối diện với góc ACB, cạnh AC đối diện với góc ABC
=> Góc ABC > góc ACB
c) Xét 2 tam giác ABD và HBD có:
+ AB = AC (Giả thiết)
+ BD là cạnh chung
+ Góc BAD = góc BHD = 90 độ (GT)
=> Tam giác ABD= t/g HBD(cạnh huyền- cạnh góc vuông)
=> Góc ABD= góc HBD(hai cạnh tương ứng)
=> BD là tia phân giác của ABC
d) Vì Tam giác BHD = t/g BAD => AD = HD (2 cạnh tương ứng)
Xét 2 t/g EDA , CDH có :
+ Góc EDA = góc HDG ( 2 góc đối đỉnh)
+ DA = DH ( cmt )
+ Góc EAD = góc CHD =90 độ (GT)
=> T/g EDA = t/g CDH (g-c-g)
=> ED = CD (2 cạnh tương ứng)
=. T/g EDC cân tại D
c) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)