Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/AD là ph/giác nên \(\frac{AB}{AC}=\frac{BD}{CD}=\frac{2a}{3a}=\frac{2}{3}\Rightarrow CD=\frac{3}{2}BD\)
BD+CD=\(BD+\frac{3}{2}BD=\frac{5}{2}BD=4a\) suy ra BD=....
b/ AB,BE là các tia ph/giác nên ta có
\(\frac{AB}{AE}=\frac{BI}{IE}\)
Tương tự như tính BD theo a, ta cũng tính AE theo a, rồi suy ra AB/AE=? suy ra BI/IE=? (2/1)
Mà BG/GM=2 nên IG//AC
c/Có \(\frac{AE}{EC}=\frac{S_{ABE}}{S_{BEC}}=\frac{AB}{BC}=\frac{1}{2}\Rightarrow\frac{S_{BEC}}{S_{ABE}}+1=2+1\Leftrightarrow\frac{S_{ABC}}{S_{ABE}}=3\Rightarrow S_{ABE}=\frac{1}{3}S_{ABC}\left(1\right)\)
Lại có AM=MC nên \(S_{AMB}=\frac{1}{2}ABC\left(2\right)\)
Lấy (2) trừ (1) được \(S_{AMB}-S_{ABE}=\left(\frac{1}{2}-\frac{1}{3}\right)S_{ABC}\Leftrightarrow S_{BEM}=\frac{1}{6}S_{ABC}\)
IG//ME nên \(\frac{S_{BIG}}{S_{BEM}}=\left(\frac{2}{3}\right)^2=\frac{4}{9}\Rightarrow S_{BIG}=\frac{4}{9}S_{BEM}=\frac{4}{9}.\frac{1}{6}S_{ABC}=\frac{2}{27}S_{ABC}\)
Có \(S_{EIGM}=S_{BEM}-S_{BIG}=\left(\frac{1}{6}-\frac{2}{27}\right)S_{ABC}=...\)
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
=>BD/2=CD/3=(BD+CD)/(2+3)=15/5=3
=>BD=6cm và CD=9cm
Xét ΔBAD có BI là phân giác
nên AI/ID=AB/BD=2
=>AI/AD=2/3=AG/AM
=>IG//BC
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{DA}{AB}=\dfrac{DC}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{DA}{6}=\dfrac{DC}{10}\)
Ta có: D nằm giữa A và C(gt)
nên DA+DC=AC
hay DA+DC=8(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{6}=\dfrac{DC}{10}=\dfrac{DA+DC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{DA}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DA=6\cdot\dfrac{1}{2}=3\left(cm\right)\\DC=10\cdot\dfrac{1}{2}=5\left(cm\right)\end{matrix}\right.\)
Vậy: DA=3cm; DC=5cm
a, Xét tam giác ABC có AD là pg góc A nên
\(\frac{BD}{AB}=\frac{DC}{AC}=\frac{BD+DC}{AB+AC}=\frac{BC}{AB+AC}=\frac{4a}{2a+3a}=\frac{4}{5}\)
=> \(\frac{BD}{AB}=\frac{4}{5}\) <=> \(\frac{BD}{2a}=\frac{4}{5}\) <=> \(BD=\frac{8a}{5}=1,6a\)