Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{ACF}\)
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)(cmt)
BE=CF
Do đó: ΔABE=ΔACF
=>AE=AF
=>ΔAEF cân tại A
b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có
BE=CF
\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)
Do đó: ΔBHE=ΔCKF
c: Ta có: ΔBHE=ΔCKF
=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF
Ta có: AH+HE=AE
AK+KF=AF
mà HE=KF và AE=AF
nên AH=AK
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
Do đó: ΔAHI=ΔAKI
=>IH=IK
=>ΔIHK cân tại I
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó; ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK
b: Ta có: ΔABH=ΔACK
nên \(\widehat{ABH}=\widehat{ACK}\)
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
DO đó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔABH=ΔACK
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
c: Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HBD}=\widehat{KCE}\)
Do đó: ΔHBD=ΔKCE
Suy ra: \(\widehat{HBD}=\widehat{KCE}\)
=>\(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà HB=CK
nên OB+HB=OC+CK
=>OH=OK
hay ΔOHK cân tại O
a: Xét ΔABC và ΔEFC có
CA=CE
FC=BC
AB=EF
Do đó: ΔABC=ΔEFC
a) Ta có: góc ABC + góc ABD= 180o (kề bù)
góc ACB + góc ACE = 180o (kề bù)
mà góc ABC = góc ACB (tam giác ABC cân tại A)
=> góc ACE = góc ABD
Xét tam giác ABD và ACE có:
AB = AC (tam giác ABC cân tại A)
Góc ACE = góc ABD (cmt)
DB=CE (gt)
=> Tam giác ABD = tam giác ACE (c.g.c)
=> góc BAD = góc CAE (2 góc tương ứng)
Xét 2 tam giác vuông ABH và ACK có:
AB = AC (tam giác ABC cân tại A)
góc BAD = góc CAE (cmt)
=> Tam giác ABH = tam giác ACK (cạnh huyền - góc nhọn)
=>BH = CK (2 cạnh tương ứng)
a: Ta có: AE+BE=AB
AF+FC=AC
mà AB=AC
và BE=FC
nên AE=AF
hay ΔAEF cân tại A
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
=>\(\widehat{AEF}=\widehat{ABC}=\widehat{ACB}\)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK; AH=AK
Xét ΔADE có
AH/AD=AK/AE
nên HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó:ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHBD=ΔKCE
Suy ra: BH=CK
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
BH=CK
Do đó:ΔABH=ΔACK
a: Xét ΔABE và ΔACF có
AB=AC
góc ABE=góc ACF
BE=CF
Do đó: ΔABE=ΔACF
b: Xét ΔHBE vuông tại H và ΔKCF vuông tại K có
EB=FC
góc E=góc F
Do đó: ΔHBE=ΔKCF
a) Ta có tam giác ABC cân tại A
=> Góc ABC = góc ACB
=> Góc ABE = Góc ACF ( vì góc ABE kề góc ABC, góc ACF kề góc ACB)
Xét tam giác ABE và tam giác ACF
AB = AC ( vì tam giác ABC cân tại A)
ABE = ACF ( cmt)
BE = CF (gt)
=> Tam giác ABE = Tam giác ACF (c-g-c)
=> AE = AF (hai cạnh tương ứng)
=> Tam giác AEF cân tại A
b)Ta có tam giác AEF cân tại A => góc AEB = góc AFC
Xét tam giác EBH và tam giác FCK
Góc BHE = góc CKF (=90 độ)
EB = FC (gt)
Góc HEB = Góc KFC ( vì góc AEB = góc AFC)
=> △EBH=△FCK (g-c-g)