K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

`Answer:`

undefined

a. Theo giả thiết: EI//AF

`=>\hat{EIB}=\hat{ACB}=\hat{ABC}=\hat{EBI}` (Do `\triangleABC` cân ở `A`)

`=>\triangleEBI` cân ở `E`

`=>EB=EI`

b. Theo giải thiết: BE=CF=>EI=CF`

Xét `\triangleOEI` và `\triangleOCF:`

`EI=CF`

`\hat{OEI}=\hat{OFC}` 

`\hat{OIE}=\hat{OCF}`

`=>\triangleOEI=\triangleOFC(g.c.g)`

`=>OE=OF`

c. Ta có: `KB⊥AB` và `KC⊥AC`

`=>KB^2=KA^2-AB^2=KA^2-AC^2=KC^2`

`=>KB=KC`

Mà `BE=CF`

`=>KE^2=KB^2+BE^2=KC^2+CF^2=KF^2`

`=>KE=KF`

`=>\triangleEKF` cân ở `K`

Mà theo phần b. `OE=OF=>O` là trung điểm `EF`

`=>OK⊥EF`

18 tháng 2 2020

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

23 tháng 6 2022

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

24 tháng 3 2021

tự kẻ hình :

a, có EI // AC (gt) 

=> góc ACI = góc AIB (đồng vị)

có góc ACI = góc ABC do tam giác ABC cân tại A (gt)

=> góc EIB = góc EBI 

=> tam giác EIB cân tại E (dh)

b, góc ACI = góc EIB (câu a)

góc ACI + góc FCO = 180

góc EIB  + góc EIO = 180

=> góc FCO = góc EIO                (1)

tam giác EIB cân tại E (câu a) => EI = EB (đn) 

                                                      mà có EB = CF (gt)  

=> FC = EI

xét tam giác COF và tam giác IOE có : góc CFO = góc OEI (so le trong CF // EI)

và (1)

=> tam giác COF = tam giác IOE (g-c-g)

=> FO = OE (đn)

hăm đúng thì chịu

24 tháng 3 2021
help me mọi người ui mình đang cần gấp
Câu 1 : Cho tam giác ABC cân tại A có góc A < 90 độ . Kẻ BH vuông góc với AC , CK vuông góc với AB ( H thuộc AC , K thuộc AB ) . Gọi O là giao điểm của BH và CK . a, Chứng minh tam giác ABH = tam giác ACK b, Chứng minh tam giác OBK =tam giác OCH c, Trên nửa mặt phảng BC không chứa điểm A lấy điểm I sao cho IB = IC . Chứng minh ba điểm A , O , I thẳng hàng . Câu 2 : Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm...
Đọc tiếp

Câu 1 : Cho tam giác ABC cân tại A có góc A < 90 độ . Kẻ BH vuông góc với AC , CK vuông góc với AB ( H thuộc AC , K thuộc AB ) . Gọi O là giao điểm của BH và CK . 

a, Chứng minh tam giác ABH = tam giác ACK 

b, Chứng minh tam giác OBK =tam giác OCH 

c, Trên nửa mặt phảng BC không chứa điểm A lấy điểm I sao cho IB = IC . Chứng minh ba điểm A , O , I thẳng hàng . 

Câu 2 : Cho tam giác ABC cân tại A . Trên cạnh AB lấy điểm E . Trên tia đối của tia CA lấy điểm F sao cho BE = CF . Nối EF cắt BC tại O . Kẻ EI song song với AF ( I thuộc BC ) . 

a, Chứng minh tam giác BEI là tam giác cân . 

b, Chứng tỏ OE =OF

c, Đường thẳng qua B và vuông góc với BA cắt đường thẳng qua C và vuông góc với AC tại K . Chứng tỏ tam giác EKF là tam giác cân và OK vuông góc với EF , 

giúp mình với ạ , mình cần tất cả trong vòng tối nay ạ , ai làm mình sẽ tick cho ạ !!!!

 

1
21 tháng 6 2020

B1:tự vẽ hình:>

b,Xét t/g vg ABH và t/g vg ACK có
       AB=AC(vì t/g ABC cân)

     Góc A chung

=>t/g ABH=t/g ACK(ch-gn)

c,Ta có:AK+KB=AB

            AH+HC=AC

Mà AB=AC,AK=AH(t/gABH=t/gACK)

=>KB=HC(1)

Mặt khác:K1+K2=H1+H2=180o

Mà K1=H1

=>K2=H2(2)

Vì t/g ABH=t/g ACK(cmt)

=>Góc ABH=góc ACK(2 góc t.ư)   (3)

Từ(1),(2) và (3)=>t/g OBK=t/g OCH(g.c.g)

c,chưa nghĩ ra

B2,Tự vẽ hình

a,t/g ABC cân tại A

=>Góc ABC=góc ACB(1)

EI // AF => góc EIB = góc ACB(2)

Từ (1) và (2)=>góc ABC=góc EIB

=>t/g BEI cân tại E

b,t/g BEI cân tại E

=>BE=EI mà BE=CF

=>CF=EI

Xét t/g IEO và t/g CFO có

      CF=EI

Góc IDE=góc COF (đối đỉnh)

góc CFI=góc OEI

=>t/gIEO=t/gCFO(g.c.g)

=>OE=OF(2 cạnh t.ư)

c,Ta có :ABKC là hình thoi(ABK=ACK=90o)

Mà t/g ABC là t/g cân tại A

=>t/g BKC cân tại K=>BK=KC

Xét t/g CFK và t/g BEK có:

BK=KC
EBK=OCF

CF=BE

=>t/g CFK=t/g BEK(g.c.g)

=>t/g EKF cân tại K

Có OE=OF(cm ở câu b)

=>Ok là trung tuyến EKF

=>OK là trung trực

=>OK vuông EF

a) Ta có: EI//AF(gt)

nên EI//AC(C∈AF)

\(\widehat{BIE}=\widehat{BCA}\)(hai góc đồng vị)

mà \(\widehat{BCA}=\widehat{CBA}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{BIE}=\widehat{CBA}\)

hay \(\widehat{BIE}=\widehat{IBE}\)

Xét ΔBIE có \(\widehat{BIE}=\widehat{IBE}\)(cmt)

nên ΔBIE cân tại E(Định lí đảo của tam giác cân)

8 tháng 3 2021

a) Ta có: EI//AF(gt)

nên EI//AC(C∈AF)

ˆBIE=ˆBCABIE^=BCA^(hai góc đồng vị)

mà ˆBCA=ˆCBABCA^=CBA^(hai góc ở đáy của ΔABC cân tại A)

nên ˆBIE=ˆCBABIE^=CBA^

hay ˆBIE=ˆIBEBIE^=IBE^

Xét ΔBIE có ˆBIE=ˆIBEBIE^=IBE^(cmt)

nên ΔBIE cân tại E(Định lí đảo của tam giác cân)