K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

Gọi giao điểm của AI và BC là K

Chứng minh tam giác BIC cân=> IB=IC

tam giác BAI= TG CAI=> Ai là pg của góc A

TG BAI=TG CAI=> góc BIA=góc CIA mà hai góc đó kề bù=> góc BAI vuông <=> AI vuông góc với BC

9 tháng 1 2016

Nguyễn Quang Thành tự mà vẽ ko ai rảnh

còn ko bít làm thì thui

9 tháng 1 2016

cung kho tick cai di mai hoi co

9 tháng 1 2016

hình như cái này sai đề bài thì phải

a: Xét ΔABN vuông tại A và ΔACM vuông tại A có

AB=AC

góc ABN=góc ACM

=>ΔABN=ΔACM

b: ΔABN vuông tại A có AE là trung tuyến

nên AE=BE=NE=BN/2

ΔACM vuông tại A có AD là trung tuyến

nên AD=CM/2=BN/2=AE

góc EAB=góc EBA=15 độ

góc DAC=góc DCA=15 độ

=>góc EAD=90-15-15=60 độ

Xét ΔAED có AE=AD  và góc EAD=60 độ

nên ΔAED đều

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

=>IB=IC

=>I nằm trên trung trực của BC

=>A,I,H thẳng hàng

Bài làm

a) Ta có: AM = MB = AB

AN +NC = AC

Mà AM = AN ( gt ), AB = AC ( ∆ABC cân )

=> BM = CN .

b) Xét tam giác ABN và tam giác ACM có:

AB = AC ( ∆ABC cân )

^A chung

AM = AN ( gt )

=> ∆ABN = ∆ACM ( c.g.c )

c) Vì ∆ABN = ∆ACM ( cmt )

=> ^ABN = ^ACM ( hai góc tương ứng ).

=> ^AMC = ^ANB

Ta có: ^AMC + ^BMC = 180°. ( Kề bù )

  ^ANB + ^BNC = 180° ( kề bù )

Mà ^AMC = ^ANB ( cmt )

=> ^BMC = ^CNB 

Xét tam giác MIB và tam giác NIC có:

^BMC = ^CNB ( cmt )

BM = NC ( cmt )

^ABN = ^ACM ( cmt )

=> ∆MIB = ∆NIC ( g.c.g )

=> BI = IC ( hai cạnh tương ứng )

=> ∆BIC cân tại I

5 tháng 3 2020

Cho mình ghép phần a và b lại nhé ;)))

Xét tam giác ABN và tam giác ACM, ta có:

AB=AC(tam giác ABC cân)

AM=AN(gt)

\(\widehat{A}\):góc chung

Suy ra \(\Delta ABM=\Delta ACN\left(c.g.c\right)\)

=>BM=CN(2 góc tương ứng)

23 tháng 2 2020

Bài 1 : 

Xét \(\Delta ABC\)có AB = AC (gt)

=> \(\Delta ABC\)cân tại A

=> \(\widehat{B}=\widehat{C}\)

MÀ \(\widehat{C}=\)70

=> \(\widehat{B}=\)70

Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

=>                       \(\widehat{A}+70^0+70^o=180^o\)

=>                     \(\widehat{A}=180^0-140^o=40^0\)

Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)

24 tháng 1 2021

Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AM=MB=AN=NC

Xét ΔABN và ΔACM có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAN}\) chung

AN=AM(cmt)

Do đó: ΔABN=ΔACM(c-g-c)

b) Xét ΔANM có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)