Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nào trả lời được thì xin hãy giúp tớ luôn mai tớ phài nộp rồi nhưng tuần này nghỉ tết sức khỏe ko tốt ko đc đi đâu chơi chỉ ở nhà nằm nghỉ đc thôi. Bạn nào trả lời nhanh nhất tớ tích cho
2/
Ta có (x2 + 4) (x - 1) = 0
=> \(\orbr{\begin{cases}x^2+4=0\\x-1=0\end{cases}}\)=> \(\orbr{\begin{cases}x^2=4\\x=1\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Thay x = 2 vào biểu thức B, ta có:
B = 3x2 + 8x - 1 = 3. 22 + 8.2 - 1 = 3.4 + 8.2 - 1 = 12 + 16 - 1 = 27
Thay x = 1 vào biểu thức B, ta có:
B = 3x2 + 8x - 1 = 3.12 + 8.1 - 1 = 3 + 8 - 1 = 11
Vậy khi (x2 + 4) (x - 1) = 0 thì giá trị của biểu thức B là 27 hoặc 11.
a) Ta có:
IE\(\perp\)AC (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)
\(\Rightarrow\)IE // MQ
Lại có:
MI \(\perp\)BE (GT)
EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)
\(\Rightarrow\)MI // EQ
mà IE // MQ (CMT)
Vậy tứ giác MIEQ có các cạnh đối song song.
b) Vì: MI // EQ (CMT)
\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)
mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)
\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)
Xét tg BKM vg tại K và tg MIB vg tại I
BM chung
\(\widehat{ABC}=\widehat{IMB}\)(CMT)
Vậy: TG BKM=TG MIB (CH-GN)
c) Vì: TG BKM=TG MIB (CMT)
\(\Rightarrow\)MK=BI ( CTỨ)
Xét tg IEM vg tại I và tg QME vg tại Q:
EM chung
\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)
Vậy TG IEM= TG QME (CH-GN)
\(\Rightarrow\)MQ=IE (CTỨ)
Ta có: BE= BI + IE (B,I,E thẳng hàng)
mà\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)
\(\Rightarrow\)BE=MK+MQ
a/
Ta có ME vg AC và FH vg AC => ME//FH
Ta có EH vg BH và MF vg BH => MF//EH
=> Tứ giác MFHE là hình bình hành. Hơn nữa ^MFH=90 => MFHE là hình chữ nhật => ME=FH (cạnh đối hcn)
b/
Ta có MF//EH (cm ở trên) => ^BMF=^BCA (góc đồng vị)
Mà ^BCA=^ABC (do tg ABC cân tại A)
=> ^ABC=^BMF
Xét hai tam giác vuông DBM và tg vuông FBM có
^ABC=^BMF
Cạnh huyền BM chung
=> tg DBM=tg FBM (Hai tg vuông có cạnh huyền và 1 góc nhọn tương ứng bằng nhau) => MD=BF
c/
Ta có ME=HF và MD=BF
Mà BF+HF=BH không đổi => MD+ME=BH không đổi