K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

A B C H M N

a) \(\Delta ABH=\Delta ACH\) (theo trường hợp c.g.c)

b) Từ (a) , ta có \(\widehat{BAH}=\widehat{CAH}\)

Xét \(\Delta AMH\)\(\Delta ANH\) có :

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

\(\Rightarrow\Delta AMH=\Delta ANH\)(ch-gn)

=> MH = HN

c) Từ b , ta cũng có :

AM = AN

d) Vì ​\(\widehat{BAH}=\widehat{CAH}\)

=> AH là phân giác của \(\widehat{BAC}\)

Mặt khác , tam giác ABC cân tại A

=> AH cũng là đường trung trực

29 tháng 5 2017

A B C H M N

a, Xét tam giác AHB và tam giác AHC ta có:

AB=AC(gt);BH=CH(gt);AH: cạnh chung

Do đó tam giác ABH=tam giác ACH(c.c.c) (đpcm)

b, Xét tam giác ABC cân tại A ta có:

\(\widehat{ABC}=\widehat{ACB}\) (theo tính chất của tam giác cân)

Xét tam giác HMB vuông tại M và tam giác HNC vuông tại N ta có:

BH=CH(gt); \(\widehat{MBH}=\widehat{NCH}\) (cmt)

Do đó tam giác HMB=tam giác HNC(cạnh huyền - góc nhọn)

=> HM=HN(cặp cạnh tương ứng)(đpcm)

c, Xét tam giác AMH vuông tại M và tam giác ANH vuông tại N ta có:

AH: cạnh huyền chung; HM=HN(cm câu b)

Do đó tam giác AMH=tam giác ANH(cạnh huyền cạnh góc vuông)

=> AM=AN(cặp cạnh tương ứng) (đpcm)

d, Do tam giác ABH=tam giác ACH (cm câu a)

nên \(\widehat{AHB}=\widehat{AHC}\) (cặp góc tương ứng)

\(\widehat{AHB}+\widehat{AHC}=180^o\)

=> \(\widehat{AHB}=\widehat{AHC}=90^o\)

Mặt khác theo bài ra: HB=HC(gt) nên AH là đường trung trực của tam giác ABC (đpcm)

Chúc bạn học tốt!!!

12 tháng 6 2017

Bài 2:

A B C D E H 1 2

a) Xét hai tam giác ABD và EBD có:

AB = EB (gt)

\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)

BD: cạnh chung

Vậy: \(\Delta ABD=\Delta EBD\left(c-g-c\right)\)

Suy ra: \(\widehat{BAD}=\widehat{BED}\) (hai góc tương ứng)

\(\widehat{BAD}=90^o\)

Do đó \(\widehat{BED}=90^o\) hay DE \(\perp\) BE.

b) Vì AB = EB (gt)

\(\Rightarrow\) \(\Delta ABE\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thởi là đường trung trực

Do đó: BD là đường trung trực của AE. (1)

c) Xét hai tam giác vuông ADH và EDC có:

DA = DE (\(\Delta ABD=\Delta EBD\))

\(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

Vậy: \(\Delta ADH=\Delta EDC\left(cgv-gn\right)\)

Suy ra: AH = EC (hai cạnh tương ứng)

Ta có: BH = AB + AH

BC = EB + EC

Mà AB = EB (gt)

AH = EC (cmt)

\(\Rightarrow\) BH = BC

\(\Rightarrow\) \(\Delta BHC\) cân tại B

\(\Rightarrow\) BD là đường phân giác đồng thời là đường cao của HC hay

BD \(\perp\) HC (2)

Từ (1) và (2) suy ra: AE // HC (đpcm).

14 tháng 6 2017

bạn ơi . sao lại cạnh góc vuông - góc nhọn vậy

9 tháng 5 2017

a)

Xét \(\Delta BHE\) và \(\Delta CHF\) có:

\(\widehat{B}=\widehat{C}\left(gt\right)\)

\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)

\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)

\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)

\(\RightarrowĐpcm\)

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

31 tháng 3 2017

Bạn tự vẽ hình nhé

Xét các tam giác vuông AKM và tam giác vuông CHN có

AM=NC ( bằng 1 nửa đoạn AB=AC)

Góc MAK= góc NCH ( cùng phụ với AMC)

=> \(\Delta AKM=\Delta CHN\)( cạnh huyền - góc nhọn)

=> AK=HC ( 2 cạnh tương ứng)

Ta có NH//AK( quan hệ giữa tính vuông góc và song song) (1)

Có N là trung điểm của cạnh AC (2)

Từ (1) và (2) => NH là đường trung bình của \(\Delta ACK\) 

=>H là trung điểm của KC

b) Theo câu a, ta có AK=HC và KH=HC

=>AK=HC

=> AK2+KH2=AH2

=>2.AK2=16

=>AK2=8

=>AK=KH=\(\sqrt{8}\)

=>KC=2.KH=2.\(\sqrt{8}\)=\(\sqrt{32}\)

Xét tam giác vuông AKC vuông tại K có AC2=AK2+KC2

=>AC2=8+32=40

=>\(AC=AB=\sqrt{40}\)

Diện tích tam giác ABC là

\(\frac{\sqrt{40}.\sqrt{40}}{2}=\frac{40}{2}=20\) cm2

Câu c hình như sai đề

1 tháng 4 2017

Theo cau a ta co:

goc BAK = gocACH va AK = CH

Ta CM duoc tam giac BKA = Tam giac AHC ( c . g . c )

Suy ra goc DKA = goc AHC

Ma tam giac AKH vuong tai A

Suy ra goc AHK = 45 do 

Suy ra goc AHC = 135 do ( ke bu )

Hay goc AKB = 135 do

Ta co goc AKH = 90 do Suy ra goc BKH = 135 do

Hay AKB = 135 do

Ta lai co goc AKH = 90 do Suy ra BKH = 35 do 

Suy ra tam giac BKA = tam gic BKM

goc BHK = goc BAK

Do HE ||  AC ( cung vuong goc AB )

Suy ra goc EHM = goc ACH Va goc BAK = goc ACH

Suy ra BHK = MHE

HM la tia phan giac goc EHB

14 tháng 3 2017

Ta có hình vẽ:

A B C M E P 1 2

a/ Xét 2\(\Delta vuông\): \(\Delta BEM\)\(\Delta CFMcó\):

BM = CM (gt)

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A)

=> \(\Delta BEM=\Delta CFM\left(ch-gn\right)\left(đpcm\right)\)

b/ Xét \(\Delta ABMvà\Delta ACM\) có:

AM: chung

AB = AC (\(\Delta ABC\) cân tại A)

BM = CM (gt)

=> \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)

=> \(\widehat{A_1}=\widehat{A_2}\) (g t/ứng)

Gọi giao điêm của AM và EF là K

Ta có: AE + BE = AB

AF + CF = AC

mà BE = CF( \(\Delta BEM=\Delta CFM\) ) ; AB = AC (đã cm)

Xét \(\Delta AEK\)\(\Delta AFK\) có:

AK: chung

\(\widehat{A_1}=\widehat{A_2}\left(cmt\right)\)

AE = AF (cmt)

=> \(\Delta AEK=\Delta AFK\left(c-g-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}EK=FK\left(1\right)\\\widehat{EKA}=\widehat{FAK}\end{matrix}\right.\)

Có: \(\widehat{EKA}=\widehat{FKA}\)\(\widehat{EKA}+\widehat{FKA}=180^o\) (kề bù)

=> \(\widehat{EKA}=\widehat{FKA}=90^o\)

=> AK _l_ EF

Từ (1) và (2) => AK là trung trực của EF

=> AM là trung trực của EF (đpcm)

26 tháng 11 2015

Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!

a) Xét \(\Delta AMBvà\Delta CMDcó:\)

AM=MC

góc AMB=góc DMC

BM=MD

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Xét \(\Delta ADMvà\Delta BMCcó:\)

AM=MC

góc AMD=góc DMC

BM=MD

\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)

\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AD//BC