Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>BDEC là hình thang
mà góc B=góc C
nên BDEC là hình thang cân
b: Xét ΔDEB có
N là trung điểm của DE
M là trung điểm của DB
Do đó: MN là đường trung bình
=>MN//EB và MN=EB/2(1)
Xét ΔECB có
P là trung điểm của EC
Q là trung điểm của BC
Do đó: PQ là đường trung bình
=>PQ//BE và PQ=BE/2(2)
từ (1) và (2) suy ra MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔDEC có
N là trung điểm của DE
P là trung điểm của EC
Do đó: NP là đường trung bình
=>NE=DC/2=NM
=>NMQP là hình thoi
a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC (1).
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC (2).
từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ
Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG
mà NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.
lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau
Giả sử MP=NQ (1)
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM
G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)
Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
Bài 1:
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của DC
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
a) Xét \(\Delta ADE\) có :
\(AD=AE\left(gt\right)\)
=> \(\Delta ADE\) cân tại A
Mà có : \(\Delta ABC;\Delta ADE\) \(\widehat{A}:chung\)
=> \(\widehat{ADE}=\widehat{ABC}\)
Mà : 2 góc này ở vị trí đồng vị
=> \(\text{DE // BC}\)
=> Tứ giác BDEC là hình thang
Mặt khác : \(\widehat{ABC}=\widehat{ACB}\left(t.c\Delta cân\right)\)
=> Tứ giác BDCE là hình thang cân
b) Xét \(\Delta DEC\) có :
\(DN=NE\left(gt\right)\)
\(EP=PC\left(gt\right)\)
=> NP là đường trung bình trong \(\Delta DEC\)
=> \(\text{ NP// CD}\) và \(NP=\dfrac{1}{2}CD\) (1)
Xét \(\Delta BDC\) có :
\(BM=MD\left(gt\right)\)
\(BQ=QC\left(gt\right)\)
=> MQ là đường trung bình trong \(\Delta BDC\)
=> \(\text{MQ // CD}\) và \(MQ=\dfrac{1}{2}CD\) (2)
Từ (1) và (2) => \(\left\{{}\begin{matrix}NP=MQ\\\text{NP//MQ}\end{matrix}\right.\)
=> Tứ giác MNPQ là hình bình hành
Lại xét \(\Delta BDE\) có :
\(DM=MB\left(gt\right)\)
\(DN=NE\left(gt\right)\)
=> \(NM\) là đường trung bình trong \(\Delta BDE\)
=> \(NM=\dfrac{1}{2}BE\)
Ta thấy : \(BD=CE\) (tính chất chất hình thang cân BDCE)
=> \(NP=NM\)
Do đó : Tứ giác MNPQ là hình thoi.