Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: lấy N là trung điểm của EC ta có: Xét tam giác EHC có I là trung điểm EC
O là trung điểm EH
=> OI là đường turng bình của tam giác EHC => OI//HC mà HC vuông góc AH => OI vuông góc AH
Xét tam giác AHI có EH vuông góc AI
IO vuông góc AH
=> AO là trường cao của tam giác AHI => AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC; I là trung điểm EC => HI là đường trung bình
=> HI//BE mà HI vuông góc AO => BE cũng vuông góc AO
Ta có : Lấy N là trung điểm của EC ta có : Xét tam giác EHC có I là trung điểm EC
O là trung điểm của EH
suy ra OI là đường trung bình của tam giác EHC suy ra OI // HC mà HC vuông góc Ah suy ra OI vuông góc vói Ah
Xét tam giác AHI có EH vuông góc AI
IO vuông góc với AH
suy ra AO là đường cao của tam giác AHI suy ra AO vuông góc HI
Xét tam giác BEC có H là trung điểm BC , I là trung điểm EC suy ra HI là đường trung bình
suy ra HI // BE mà HI vuông góc AO suy ra BE vuông góc với AO
a: ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔCAB có
H,K lần lượt là trung điểm của CB,CA
=>HK là đường trung bình của ΔCAB
=>HK//AB và \(HK=\dfrac{AB}{2}\)
Xét tứ giác AKHB có KH//AB
nên AKHB là hình thang
b: Ta có: AD\(\perp\)AH
BC\(\perp\)AH
Do đó: AD/BC
=>AD//BH
Xét tứ giác ADHB có
AD//HB
AB//HD
Do đó: ADHB là hình bình hành
Bạn đổi D thành M nha
Gọi I là trung điểm của KC
Xét ΔKHC có M,I lần lượt là trung điểm của KH,KC
nên MI là đường trung bình
=>MI//HC
=>MI vuông góc với AH
Xét ΔAHI có
IM,HK là các đường cao
IM cắt HK tại M
Do đó: M là trực tâm
=>AM vuông góc với HI
Xét ΔBKC có
CH/CB=CI/CK
nên HI//BK
=>AM vuông góc với BK
Bạn đổi I thành M nha
Gọi I là trung điểm của KC
Xét ΔKHC có M,I lần lượt là trung điểm của KH,KC
nên MI là đường trung bình
=>MI//HC
=>MI vuông góc với AH
Xét ΔAHI có
IM,HK là các đường cao
IM cắt HK tại M
Do đó: M là trực tâm
=>AM vuông góc với HI
Xét ΔBKC có
CH/CB=CI/CK
nên HI//BK
=>AM vuông góc với BK
a/
Ta có
HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
=> AC//HK (Trong hbh 2 cạnh đối // với nhau)
b/
Ta có
\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC
Mà HK//AC (cmt)
\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng
=> AC//MK => MNCK là hình thang
Ta có
AC//MK => AN//MH
\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN
=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
\(\widehat{A}=90^o\)
=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)
Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)
=> MN=CK
=> hình thang MNCK có MN = CK => MNCK là hình thang cân
c/
Xét tg AHC có
OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)
HI=CI (gt)
=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)
Xét hình bình hành ACKH có
\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)
\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)
Bạn đổi I thành M nha
Gọi I là trung điểm của KC
Xét ΔKHC có M,I lần lượt là trung điểm của KH,KC
nên MI là đường trung bình
=>MI//HC
=>MI vuông góc với AH
Xét ΔAHI có
IM,HK là các đường cao
IM cắt HK tại M
Do đó: M là trực tâm
=>AM vuông góc với HI
Xét ΔBKC có
CH/CB=CI/CK
nên HI//BK
=>AM vuông góc với BK