Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=180^0\)
nên AEHF là tứ giác nội tiếp
c: Xét ΔAFH vuông tại F và ΔCFB vuông tại F có
\(\widehat{FAH}=\widehat{FCB}\)
Do đó: ΔAFH\(\sim\)ΔCFB
Suy ra: AF/CF=AH/CB
hay \(AF\cdot CB=AH\cdot CF\)
a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH=góc ADH=90 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
b: Gọi giao của AH với BC là N
=>AH vuông góc BC tại N
góc IEO=góc IEH+góc OEH
=góc IHE+góc OCE
=90 độ-góc OCE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
Xét tứ giác AFHE có
\(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
=>AFHE là tứ giác nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
=>IA=IH=IE=IF
Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
=>BFEC là tứ giác nội tiếp đường tròn đường kính BC
=>M là trung điểm của BC
=>MB=MC=ME=MF
Gọi O là giao điểm của AH với BC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại O
ΔBHO vuông tại O
=>\(\widehat{OHB}+\widehat{OBH}=90^0\)
mà \(\widehat{OBH}+\widehat{OCE}=90^0\)(ΔBEC vuông tại E)
nên \(\widehat{OHB}=\widehat{OCE}\)
mà \(\widehat{OHB}=\widehat{IHE}\)(hai góc đối đỉnh)
nên \(\widehat{IHE}=\widehat{OCE}\)
IH=IE
=>\(\widehat{IHE}=\widehat{IEH}\)
mà \(\widehat{IHE}=\widehat{OCE}\)
nên \(\widehat{IEH}=\widehat{OCE}=\widehat{ECB}\)
ME=MB
=>ΔMEB cân tại M
=>\(\widehat{MEB}=\widehat{MBE}\)
=>\(\widehat{MEB}=\widehat{EBC}\)
\(\widehat{IEM}=\widehat{IEH}+\widehat{MEH}\)
\(=\widehat{EBC}+\widehat{ECB}\)
\(=90^0\)
=>ME là tiếp tuyến của (I)
FIE = IHF ( tiếp tuyến trong...) mà IHF = ACG ( 2 góc tư ) . ACG=ABC. (1)
Có ABC+ ECB=90 (2)
góc ECB=HFG ( tứ giác HFGC nt ) (3) => IFO+HFG=90