Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(CG\perp EF\), \(BN\perp EF\)( \(G,N\in EF\))
Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;
BM = CM( M là trung điểm của BC)
\(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)
=> \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)
=> BN = CG.
Gọi P là giao của đường phân giác góc BAC và EF.
Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.
=> \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).
=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)
Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:
BN = CG( chứng minh trên)
\(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)
=> \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)