Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
a: EC=12cm
b: Xét ΔABD vuông tại D và ΔaCE vuông tại E có
BA=CA
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
c: Xét ΔIBE vuông tại E và ΔICD vuông tại D có
EB=DC
góc IBE=góc ICD
Do đó: ΔIBE=ΔICD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta co: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có MB=MC
nen M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Hình bạn tự vẽ nha !
Bài làm :
a) Xét \(\Delta AMB\)và \(\Delta AMC\)có :
AB = AC (gt)
\(\widehat{BAM}=\widehat{CAM}\)(Vì AM là tia phân giác của \(\widehat{BAC}\))
AM cạnh chung
=> \(\Delta AMB=\Delta AMC\left(c.g.c\right)\)
=> BM = CM (2 cạnh tương ứng)
=> M là trung điểm BC
b) Xét \(\Delta BMN\)và \(\Delta CMA\)có :
AM = NM ( Vì M là trung điểm AN)
\(\widehat{BMN}=\widehat{CMA}\)( đối đỉnh )
BM = CM (cmt)
=> \(\Delta BMN=\Delta CMA\left(c.g.c\right)\)
\(\widehat{BNM}=\widehat{CAM}\)( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong nên BN // AC
c) Xét \(\Delta AMQ\)vuông tại Q và \(\Delta AMP\)vuông tại P có :
\(\widehat{BAM}=\widehat{CAM}\)(gt)
AM cạnh chung
=> \(\Delta AMQ=\Delta AMP\left(ch-gn\right)\)
=> MQ = MP ( 2 cạnh tương ứng )
a: góc ABC=góc ACB=(180-50)/2=130/2=65 độ
b: ΔÂBC cân tại A
mà AM là trung tuyến
nen AM vuông góc với BC
c: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>AC//BD