Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đẳng thức đề bài ta suy ra (7x + 2).(5x + 1) = (7x + 1).(5x + 7)
=> 7x.(5x + 1) + 2.(5x + 1) = 7x.(5x + 7) + 1.(5x + 7)
=> 35x2 + 7x + 10x + 2 = 35x2 + 49x + 5x + 7
=> 17x + 2 = 54x + 7
=> 54x - 17x = 7 - 2
=> 37x = 5
=> x = \(\frac{5}{37}\)
Theo t/c dãy tỉ số=nhau;
\(\frac{7x+2}{5x+7}=\frac{7x+1}{5x+1}=\frac{7x+2-\left(7x+1\right)}{5x+7-\left(5x+1\right)}=\frac{7x+2-7x-1}{5x+7-5x-1}=\frac{1}{6}\)
=>\(\frac{7x+2}{5x+7}=\frac{1}{6}\)
=>(7x+2).6=5x+7
=>42x+12=5x+7
=>42x+12-(5x+7)=0
=>42x+12-5x-7=0=>37x-5=0=>x=5/37
Vậy...
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\left|3y-1\right|\ge0\forall y\)
\(\left|z+2\right|\ge0\forall z\)
Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)
Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)