K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

tks mn

 

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\left|3y-1\right|\ge0\forall y\)

\(\left|z+2\right|\ge0\forall z\)

Do đó: \(\left(x-1\right)^2+\left|3y-1\right|+\left|z+2\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\left(x,y,z\right)=\left(1;\dfrac{1}{3};-2\right)\)

16 tháng 2 2019

suy ra x nhân x + x nhân 1 = y nhân y + y nhân 2

suz ra  x  =2y  

16 tháng 2 2019

bạn thay x gấp đôi y là lm đc hhets

27 tháng 12 2018
Chon 1 cuốn à. Sách j cũng đc hả
27 tháng 12 2018

em có

 đề

16 tháng 2 2019

x(1+y)+2y=10

=>x(1+y)+2y+2=12

=>x(1+y)+2(y+1)=12

=>(x+2)(y+1)=12

xẩy ra các t/hợp

hk tốt

16 tháng 2 2019

\(x+xy+2y=10\)

\(\Leftrightarrow x+xy+2y+2=10+2\)(cộng cả hai vế cho 2)

\(\Leftrightarrow\left(xy+x\right)+\left(2y+2\right)=12\)

\(\Leftrightarrow x\left(y+1\right)+2\left(y+1\right)=12\)

\(\Leftrightarrow\left(y+1\right)\left(x+2\right)=12\)

\(12=2.6=3.4=1.12=\left(-2\right)\left(-6\right)=\left(-3\right)\left(-4\right)=\left(-1\right)\left(-12\right)\)

LẬP BẢNG, TA CÓ:

y+11234612-1-2-3-4-6-12
y0123511-2-3-4-5-7-13
x+21264321-12-6-4-3-2-1
x104210-1-14-8-6-5- 4-3

VẬY: Các cặp số (x,y) tương ứng là: (10,0);(4,1);(2,2);(1,3);(0,5);(-1,11);(-14,-2);(-8,-3);(-6,-4);(-5,-5):(-4,-7),(-3,-13)

3 tháng 1 2016

để rắc rối quá @_@ to ko bt lm sorry T_T

15 tháng 10 2018

Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)

+) \(\frac{y+z}{x}=2\)

=> y+z=2x

+) \(\frac{x+z}{y}=2\)

=>x+z=2y

+)\(\frac{x+y}{z}=2\)

=> x+y=2z 

Mà B= ( 1+x/y)(1+y/z) (1+z/x)

      B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

      B= \(\frac{2z.2x.2y}{xyz}\)

      B= 8

~ Chúc bạn học tốt ~

Tích và kết bạn với mình nha!

15 tháng 10 2018

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Lại có:

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

(+) Xét x + y + z \(\ne\) 0

Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)